
机机机器器器学学学习习习的的的数数数学学学原原原理理理

鄂鄂鄂维维维南南南

October 16, 2020 1 / 44

ML can do wonders: Approximating high dimensional functions

Given S = {(xj, yj = f ∗(xj)), j ∈ [n]}, learn (i.e. approximate) f ∗.

Example: Cifar 10 dataset (f ∗ is a discrete function defined on the space of images)

Input: each image ∈ [0, 1]d,
d = 32× 32× 3 = 3072.

Output: f ∗ ∈ {airplane,
..... , truck}.
f ∗ : [0, 1]3072 → {airplane,
..... , truck}.
f ∗(each image) = category

October 16, 2020 2 / 44

Sampling unknown high dimensional distributions

The probability distribution of all real and fake human faces is an unknown distribution in
high dimension.

October 16, 2020 3 / 44

All these are made possible by our ability to
accurately approximate high dimensional
functions using finite pieces of data.

This opens up new possibilities for attacking
problems that suffer from the “curse of
dimensionality” (CoD):

As dimensionality grows, computational cost grows exponentially fast.

October 16, 2020 4 / 44

The DNN - SGD paradigm

DNN = deep neural network, SGD = stochastic gradient descent
1 choose a hypothesis space (set of trial functions), e.g. 2-layer neural networks

f (x, θ) =

m∑
j=1

ajσ(wT
j x), θ = (aj,wj)

σ is a nonlinear activation function, e.g. σ(z) = max(z, 0)
2 choose a loss function (to fit the data), e.g. “empirical risk”

R̂n(θ) =
1

n

∑
j

(f (xj, θ)− f ∗(xj))2 =
1

n

n∑
j=1

`j(θ)

3 choose an optimization algorithm and parameters, e.g. gradient descent (GD)

θk+1 = θk − η∇R̂n(θ) = θk − η
1

n

∑
j

∇`j(θk)

Stochastic gradient descent (SGD):

θk+1 = θk − η∇`jk(θk)

j1, j2, · · · are iid random variables uniformly drawn from 1, 2, · · ·n.
October 16, 2020 5 / 44

1. Stochastic control (Han and E (2016))

Model dynamics (analog of ResNet):

zl+1 = zl + gl(zl, al) + ξl,

zl = state, al = control, ξl = noise.

min
{al}T−1

l=0

E{ξl}
{ T−1∑

l=0

cl(zl, al(zl)) + cT (zT)
}
,

Look for a feedback control:
al = al(z).

Neural network approximation:

al(z) ≈ ãl(z|θl), l = 0, · · · , T − 1

Optimization problem (SGD applies directly)

min
{θl}T−1

l=0

E{ξl}
{ T−1∑

l=0

cl(zl, ãl(zl|θl)) + cT (zT)}

subject to zl+1 = zl + gl(zl, al) + ξl.
October 16, 2020 6 / 44

Example: Energy Storage with Multiple Devices

The setting is similar to the above but now there are multiple devices, in which we do not
find any other available solution for comparison.

0.6

0.7

0.8

0.9

1.0

1.1

10000 20000 30000 40000 50000

 iteration

re
w

ar
d

re
la

tiv
e

to
 th

e
ca

se
 n

=
50

Number of devices

n=30
n=40
n=50

Figure: Relative reward. The space of control function is Rn+2 → R3n for n = 30, 40, 50, with multiple equality

and inequality constrains.

October 16, 2020 7 / 44

2. Nonlinear parabolic PDE

∂v

∂t
=

1

2
σσT : ∇2

xv + µ · ∇v + f
(
σT∇v

)
, v(0, x) = g(x)

or equivalently with u(t, x) = v(T − t, x)

∂u

∂t
+

1

2
σσT : ∇2

xu + µ · ∇u + f
(
σT∇u

)
= 0, u(T, x) = g(x)

Reformulating as a stochastic optimization problem using backward stochastic differential
equations (BSDE, Pardoux and Peng (1990))

inf
Y0,{Zt}0≤t≤T

E|g(X0)− Y0|2,

s.t. Xt = X0 +

∫ t

0

µ(s,Xs) ds +

∫ t

0

σ(s,Xs) dWs,

Yt = Y0 −
∫ t

0

f (Zs) ds +

∫ t

0

(Zs)
T dWs.

The unique minimizer is the solution to the PDE with:

Yt = u(t,Xt) and Zt = σT (t,Xt)∇u(t,Xt).

E, Han and Jentzen (Comm Math Stats 2017); Han, Jentzen and E (PNAS 2018)
October 16, 2020 8 / 44

Stochastic control revisited

LQG (linear quadratic Gaussian) for d=100

dXt = 2
√
λmt dt +

√
2 dWt,

Cost functional: J({mt}0≤t≤T) = E
[∫ T

0 ‖mt‖2
2 dt + g(XT)

]
.

HJB equation:
∂tu + ∆u− λ‖∇u‖2

2 = 0

u(t, x) = −1

λ
ln

(
E
[

exp
(
− λg(x +

√
2WT−t)

)])
.

0 10 20 30 40 50

lambda

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

u
(0

,0
,.
..
,0

)

Deep BSDE Solver

Monte Carlo

Figure: Left: Relative error of the deep BSDE method for u(t=0, x=(0, . . . , 0)) when λ = 1, which achieves 0.17% in a runtime

of 330 seconds. Right: Optimal cost u(t=0, x=(0, . . . , 0)) against different λ.

October 16, 2020 9 / 44

Open source platform

Jiequn Han et al.

October 16, 2020 10 / 44

3. DeePMD: Molecular dynamics with ab initio accuracy

mi
d2xi
dt2

= −∇xiV, V = V (x1,x2, ...,xi, ...,xN),

Key question: V =?

Two ways to calculate V :

Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive (limited to about 1000 atoms).

Empirical potentials: basically guess what V should be.
Efficient but unreliable.

Now: Use QM to supply the data needed to train a neural network model.

October 16, 2020 11 / 44

Accuracy comparable to QM for a wide range of materials and
molecules

Linfeng Zhang, Jiequn Han, et al (2018)

October 16, 2020 12 / 44

DeePMD simulation of 100M atoms with ab initio accuracy

D. Lu, et al, arXiv: 2004.11658; W. Jia, et al, arXiv: 2005.00223

October 16, 2020 13 / 44

Open source platform

Linfeng Zhang, Jiequn Han, Han Wang et al.

October 16, 2020 14 / 44

4. Protein folding and the nonlinear multi-grid method

{xj}= positions of the atoms in a protein
U({xj}) = potential energy (chemical bonding, Van der Waals, electro-static, etc).

“Minimize”U, or sample ρ =
1

Z
e−βU , β = (kBT)−1

Folding Trp-cage (20 amino acids, 38 collective variables)

Han Wang, Linfeng Zhang, Weinan E (2018)

October 16, 2020 15 / 44

5. Moment closure for Boltzmann equation

f = f (x,v, t), (U ,W) = (U ,W)(x, t) =
∫
g(v)f (x,v, t)dv

∂tf + v · ∇xf =
1

ε
Q(f), v ∈ R3, x ∈ Ω ⊂ R3

{
∂tU +∇x · F (U ,W ; ε) = 0,

∂tW +∇x ·G(U ,W ; ε) = R(U ,W ; ε).

2

3

4

B
u

lk
V

e
lo

ci
ty

Mach = 3.5

1.5

2.0

2.5

3.0

Mach = 2.5

1.2

1.4

1.6

1.8

Mach = 1.5

0

1

2

3

N
o
rm

a
l
S

tr
e
ss

0.0

0.5

1.0

1.5

0.00

0.05

0.10

0.15

0.20

−6 −4 −2 0 2 4

x

−8

−6

−4

−2

0

H
e
a
t

F
lu

x

Boltzmann

NSF

HermMLC

−6 −4 −2 0 2 4

x

−2

−1

0

Boltzmann

NSF

HermMLC

−6 −4 −2 0 2 4

x

−0.20

−0.15

−0.10

−0.05

0.00

Boltzmann

NSF

HermMLC

Jiequn Han, Zheng Ma,
October 16, 2020 16 / 44

Figure: Representative physical models at different scale and their most important modeling ingredients.

October 16, 2020 17 / 44

Other work

DeePHF, DeePKS

Reinforced dynamics

deterministic control (Kang, Gong, et al (2019))

game theory (Han and Hu (2019), Ruthotto, Osher et al (2020))

Deep Ritz method (E and Yu (2018))
“deep Galerkin method” (really least square, Sirignano and Spiliopoulos (2018))
deep Galerkin method (Zang, Bao (2019))

many applications to chemistry, material science, combustion, non-Newtonian fluid
dynamics, control theory, finance, economics

ML is used to generate new (reliable and interpretable) physical models (say for gas
dynamics, non-Newtonian fluids).

See E, Han and Zhang: Integrating ML with Physics-based Modeling, 2020.

October 16, 2020 18 / 44

Mathematical theory of machine learning

1. Understanding the mysteries about ML
Why does it work in such high dim?

Why is it so fragile? (require such extensive parameter tuning)

2. Seeking better formulations of ML
More robust: requires less parameter tuning

More general

Will discuss supervised learning: Approximate a target function using a finite dataset

October 16, 2020 19 / 44

Approximation of functions

Classical approximation theory: Approximation by piecewise polynomials (m = number of
free parameters)

inf
f∈Hm

‖f − fm‖L2(X) ≤ C0h
α‖f‖Hα(X), h ∼ m−1/d

Sobolev (Besov) norm is the right quantity for the right hand side.

They suffer from CoD: m ∼ ε−d (if α = 1) where ε is the error tolerance.

October 16, 2020 20 / 44

What should we expect in high dimension?

Example: Monte Carlo methods for integration

I(g) = Ex∼µg(x), Im(g) =
1

m

∑
j

g(xj)

{xj, j ∈ [m]} is i.i.d samples of µ.

E(I(g)− Im(g))2 =
var(g)

m
, var(g) = Ex∼µg2(x)− (Ex∼µg(x))2

The best we can expect for function approximation in high D:

inf
f∈Hm

R(f) = inf
f∈Hm

‖f − f ∗‖2
L2(dµ) .

‖f ∗‖2
∗

m

What should be the norm ‖ · ‖∗ (associated with the choice of Hm)?

October 16, 2020 21 / 44

Approximating functions in high D: An illustrative example

Traditional approach for Fourier transform:

f (x) =

∫
Rd
a(ω)ei(ω,x)dω, fm(x) =

1

m

∑
j

a(ωj)e
i(ωj ,x)

{ωj} is a fixed grid, e.g. uniform.

‖f − fm‖L2(X) ≤ C0m
−α/d‖f‖Hα(X)

“New” approach: Let π be a probability distribution and (σ(z) = eiz)

f (x) =

∫
Rd
a(ω)ei(ω,x)π(dω) = Eω∼πa(ω)ei(ω,x) = Eω∼πa(ω)σ(ωTx)

Let {ωj} be an i.i.d. sample of π, fm(x) = 1
m

∑m
j=1 a(ωj)e

i(ωj,x),

E|f (x)− fm(x)|2 = m−1var(f)

fm(x) = 1
m

∑m
j=1 ajσ(ωT

j x) = two-layer neural network.

October 16, 2020 22 / 44

Two-layer neural network model: Barron spaces

E, Ma and Wu (2018, 2019), Bach (2017)

Hm = {fm(x) =
1

m

∑
j

ajσ(wT
j x)}, σ(z) = max(z, 0)

Consider the function f : X = [0, 1]d 7→ R of the following form

f (x) =

∫
Ω

aσ(wTx)ρ(da, dw) = E(a,w)∼ρ[aσ(wTx)], x ∈ X

ρ is a probability distribution on Ω = R1 × Rd+1.

‖f‖B = inf
ρ:f(x)=Eρ[aσ(wTx)]

(
Eρ[a2‖w‖2

1]
)1/2

B = {f ∈ C0 : ‖f‖B <∞}

Related work in Barron (1993), Klusowski and Barron (2016), E and Wojtowytsch (2020)

October 16, 2020 23 / 44

What kind of functions admit such a representation?

Theorem (Barron and Klusowski (2016)): If
∫
Rd ‖ω‖

2
1|f̂ (ω)|dω <∞, where f̂ is the

Fourier transform of f , then f can be represented as

f̃ (x) = f (x)− (f (0) + x · ∇f (0)) =

∫
Ω

aσ(wTx)ρ(da, dw)

for x ∈ [0, 1]d. Furthermore, we have

E(a,w)∼ρ|a|‖w‖1 ≤ 2

∫
Rd
‖ω‖2

1|f̂ (ω)|dω

October 16, 2020 24 / 44

Theorem (Direct Approximation Theorem)

‖f − fm‖L2(X) .
‖f‖B√
m

Theorem (Inverse Approximation Theorem)
Let

NC
def
= { 1

m

m∑
k=1

akσ(wT
kx) :

1

m

m∑
k=1

|ak|2‖wk‖2
1 ≤ C2,m ∈ N+ }.

Let f ∗ be a continuous function. Assume there exists a constant C and a sequence of
functions fm ∈ NC such that

fm(x)→ f ∗(x)

for all x ∈ X , then there exists a probability distribution ρ∗ on Ω, such that

f ∗(x) =

∫
aσ(wTx)ρ∗(da, dw),

for all x ∈ X and ‖f ∗‖B ≤ C.

October 16, 2020 25 / 44

Estimation error

Since we can only work with a finite dataset, what happens outside the dataset?

Figure: The Runge phenomenon: f ∗(x) = 1
1+25x2

October 16, 2020 26 / 44

Training and testing errors

In practice, we minimize the training error:

R̂n(θ) =
1

n

∑
j

(f (xj, θ)− f ∗(xj))2

but we are interested in the testing error:

R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

H = a set of functions, S = (x1,x2, ...,xn) = dataset. Upto log terms,

sup
h∈H

∣∣∣∣∣Ex [h(x)]− 1

n

n∑
i=1

h(xi)

∣∣∣∣∣ ∼ RadS(H)

where the Rademacher complexity of H with respect to S is defined as

RadS(H) =
1

n
Eξ

[
sup
h∈H

n∑
i=1

ξih(xi)

]
,

where {ξi}ni=1 are i.i.d. random variables taking values ±1 with equal probability.

October 16, 2020 27 / 44

Complexity estimates

Theorem (Bach, 2017)

Let FQ = {f ∈ B, ‖f‖B ≤ Q}. Then we have

RadS(FQ) ≤ 2Q

√
2 ln(2d)

n

where n = |S|, the size of the dataset S.

October 16, 2020 28 / 44

A priori estimates for regularized model

Ln(θ) = R̂n(θ) + λ

√
log(2d)

n
‖θ‖P, θ̂n = argmin Ln(θ)

where the path norm is defined by:

‖θ‖P =

(
1

m

m∑
k=1

|ak|2‖wk‖2
1

)1/2

Theorem (E, Ma, Wu, 2018)

Assume f ∗ : X 7→ [0, 1] ∈ B. There exist constants C0, such that for any δ > 0, if λ ≥ C0,
then with probability at least 1− δ over the choice of training set, we have

R(θ̂n) .
‖f ∗‖2

B
m

+ λ‖f ∗‖B

√
log(2d)

n
+

√
log(1/δ) + log(n)

n
.

October 16, 2020 29 / 44

Approximation theory and function spaces for other ML models

random feature model: Reproducing kernel Hilbert space (RKHS)

Residual networks (ResNets): Flow-induced space (E, Ma and Wu (2019))

Multi-layer neural networks: Multi-layer spaces (E and Wojtowytsch (2020))

Up to log terms, we have

R(f̂) .
‖f ∗‖2

∗
m

+
‖f ∗‖∗√

n

where m = number of free parameters, n = size of training dataset.

October 16, 2020 30 / 44

Better formulation: ML from a continuous viewpoint

Formulate a “nice” continuous problem, then discretize to get concrete
models/algorithms.

For PDEs, “nice” = well-posed.

For calculus of variation problems, “nice” = “convex”, lower semi-continuous.

For ML, “nice” = variational problem has simple landscape.

Key ingredients

representation of functions (as expectations)

formulating the variational problem (as expectations)

optimization, e.g. gradient flows

E, Ma and Wu (2019)

October 16, 2020 31 / 44

Function representation

integral-transform based:

f (x; θ) =

∫
Rd
a(w)σ(wTx)π(dw)

=Ew∼πa(w)σ(wTx)

=E(a,w)∼ρaσ(wTx)

=Eu∼ρφ(x,u)

θ = parameters in the model: a(·) or the prob distributions π or ρ

flow-based:

dz

dτ
=g(τ, z, θ)

g(τ, z, θ) =Ew∼πτa(w, τ)σ(wTz)

=E(a,w)∼ρτaσ(wTz)

=Eu∼ρτφ(z,u), z(0,x) = x

f (x, θ) = 1Tz(1,x)

θ = {aτ(·)} or {πτ} or {ρτ}
October 16, 2020 32 / 44

Optimization: Gradient flows

“Free energy” = R(θ) = Ex∼µ(f (x, θ)− f ∗(x))2

f (x) =

∫
a(w)σ(wTx)π(dw) = Ew∼πa(w)σ(wTx)

Follow Halperin and Hohenberg (1977):

a = non-conserved, use “model A” dynamics:

∂a

∂t
= −δR

δa

π = conserved (probability density), use “model B”:

∂π

∂t
+∇ · J = 0

J = πv, v = −∇V, V =
δR
δπ
.

October 16, 2020 33 / 44

Discretizing the gradient flows

Discretizing the population risk (into the empirical risk) using data

Discretizing the gradient flow
particle method – the dynamic version of Monte Carlo

smoothed particle method – analog of vortex blob method

spectral method – very effective in low dimensions

We can see that gradient descent algorithm (GD) for random feature and neural network
models are simply the particle method discretization of the gradient flows discussed before.

October 16, 2020 34 / 44

Discretization of the conservative flow for flow-induced
representation

Function representation: f (x; θ) = E(a,w)∼ρaσ(wTx)

∂tρ = ∇(ρ∇V), V =
δR
δρ

Particle method discretization:

ρ(a,w, t) ∼ 1

m

∑
j

δ(aj(t),wj(t)) =
1

m

∑
j

δuj(t)

gives rise to
duj
dt

= −∇ujI(u1, · · · ,um)

where

I(u1, · · · ,um) = R(fm), uj = (aj,wj), fm(x) =
1

m

∑
j

ajσ(wT
j x)

This is exactly gradient descent for (scaled) two-layer neural networks.

October 16, 2020 35 / 44

Why is continuous formulation better? No “phase transition”

Continuous viewpoint (in this case same as mean-field): fm(x) = 1
m

∑
j ajσ(wT

j x)

Conventional NN models: fm(x) =
∑

j ajσ(wT
j x)

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

2.0 2.5 3.0 3.5 4.0 4.5
log10(m)

1.8

2.0

2.2

2.4

2.6

lo
g 1

0(
n)

Test errors

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

Figure: (Left) continuous viewpoint; (Right) conventional NN models. Target function is a single neuron.

Ma, Wu and E (2020)

October 16, 2020 36 / 44

The optimal control problem for flow-induced formulation

In a slightly more general form

dz

dτ
= Eu∼ρτφ(z,u), z(0,x) = x

z = state, ρτ = control at time τ .

The objective : Minimize R over {ρτ}

R({ρτ}) = Ex∼µ(f (x)− f ∗(x))2 =

∫
Rd

(f (x)− f ∗(x))2dµ

where
f (x) = 1Tz(1,x)

October 16, 2020 37 / 44

Pontryagin’s maximum principle

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Eu∼µ[pTφ(z,u)].

The solutions of the control problem must satisfy:

ρτ = argmaxρEx[H
(
zt,xτ ,pt,xτ , ρ

)
], ∀τ ∈ [0, 1],

and for each x, (zt,xτ ,pt,xτ) are defined by the forward/backward equations:

dzt,xτ
dτ

= ∇pH = Eu∼ρτ (·;t)[φ(zt,xτ ,u)]

dpt,xτ
dτ

= −∇zH = Eu∼ρτ (·;t)[∇T
zφ(zt,xτ ,u)pt,xτ].

f (x) = 1Tz(x, 1)

with the boundary conditions:

zt,x0 = x

pt,x1 = 2(f (x; ρ(·; t))− f ∗(x))1.

October 16, 2020 38 / 44

Gradient flow for flow-based models

Define the Hamiltonian H : Rd × Rd × P2(Ω) :7→ R as

H(z,p, µ) = Eu∼µ[pTφ(z,u)].

The gradient flow for {ρτ} is given by

∂tρτ(u, t) = ∇ · (ρτ(u, t)∇V (u; ρ)) , ∀τ ∈ [0, 1],

where

V (u; ρ) = Ex[
δH

δρ

(
zt,xτ ,pt,xτ , ρτ(·; t)

)
],

and for each x, (zt,xτ ,pt,xτ) are defined by the forward/backward equations:

dzt,xτ
dτ

= ∇pH = Eu∼ρτ (·;t)[φ(zt,xτ ,u)]

dpt,xτ
dτ

= −∇zH = Eu∼ρτ (·;t)[∇T
zφ(zt,xτ ,u)pt,xτ].

with the boundary conditions:

zt,x0 = x

pt,x1 = 2(f (x; ρ(·; t))− f ∗(x))1.

October 16, 2020 39 / 44

Discretize the gradient flow

forward Euler for the flow in τ variable, step size 1/L.

particle method for the GD dynamics, M samples in each layer

zt,xl+1 = zt,xl +
1

LM

M∑
j=1

φ(zt,xl ,ujl (t)), l = 0, . . . , L− 1

pt,xl = pt,xl+1 +
1

LM

M∑
j=1

∇zφ(zt,xl+1,u
j
l+1(t))pt,xl+1, l = 0, . . . , L− 1

dujl (t)

dt
= −Ex[∇T

wφ(zt,xl ,ujl (t))p
t,x
l].

This recovers the GD algorithm (with back-propagation) for the (scaled) ResNet:

zl+1 = zl +
1

LM

M∑
j=1

φ(zl,ul).

October 16, 2020 40 / 44

Max principle-based training algorithm

Qianxiao Li, Long Chen, Cheng Tai and Weinan E (2017):

Basic “method of successive approximation” (MSA):

Initialize: θ0 ∈ U

For k = 0, 1, 2, · · · :
Solve

dzkτ
dτ

= ∇pH(zkτ ,p
k
τ , θ

k
τ), zk0 = V x

Solve
dpkτ
dτ

= −∇zH(zkτ ,p
k
τ , θ

k
τ), pk1 = 2(f (x; θk)− f ∗(x))1

Set θk+1
τ = argmax θ∈ΘH(zkτ ,p

k
τ , θ), for each τ ∈ [0, 1]

Extended MSA:

H̃(z,p, θ,v, q) := H(z,p, θ)− 1

2
λ‖v − f (z, θ)‖2 − 1

2
λ‖q +∇zH(z,p, θ)‖2.

October 16, 2020 41 / 44

October 16, 2020 42 / 44

What have we really learned from ML?

Representation of functions as expectations:

integral-transform based:
f (x; θ) = E(a,w)∼ρaσ(wTx)

f (x) = EθL∼πLa
(L)
θL
σ(EθL−1∼πL−1

. . . σ(Eθ1∼π1a
1
θ2,θ1

σ(a0
θ1
· x)) . . .)

flow-based:

dz

dτ
=E(a,w)∼ρτaσ(wTz), z(0,x) = x

f (x, θ) =1Tz(1,x)

and then discretize using particle, spectral or other numerical methods.

October 16, 2020 43 / 44

Concluding remarks

ML has changed and will continue to change the way we deal with functions, and this
will have a very significant impact in applied mathematics, and mathematics.

A reasonable mathematical picture for ML is emerging, from the perspective of
numerical analysis.

At the heart of the mathematical theory for machine learning is high dimensional
analysis.

Review articles (can be found on my webpage https://web.math.princeton.edu/ weinan):

Towards a mathematical understanding of machine learning: What is known and what is
not

Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine
learning

Integrating machine learning with physics-based modeling

October 16, 2020 44 / 44

