Bl > B R SR P

ThAER

October 16, 2020 1/ 44

ML can do wonders: Approximating high dimensional functions

Given S = {(xj,y; = f*(x;)),J € [n|}, learn (i.e. approximate) f*.

Example: Cifar 10 dataset (f* is a discrete function defined on the space of images)

airplane

, BT gy
automobile E e

bird
cat
deer
dog
frog
horse
ship

truck

EEEY - ST
DS
SmB e R
FEOEEEEE P
P~ B TR
e o e [SIAb T
CEENEISanE
T ERGELE R
=EE T Mo P

%0 s I P S B R

e Input: each image € [0, 1]¢,
d=32x 32 x 3 =23072.

@ Output: f* € {airplane,
..... , truck}.

o f*:10,1]°" — {airplane,
..... , truck}.
f*(each image) = category

Sampling unknown high dimensional distributions

The probability distribution of all real and fake human faces is an unknown distribution in
high dimension.

October 16, 2020 3 /44

All these are made possible by our ability to
accurately approximate high dimensional
functions using finite pieces of data.

This opens up new possibilities for attacking
problems that suffer from the “curse of

dimensionality” (CoD)

As dimensionality grows, computational cost grows exponentially fast.

The DNN - SGD paradigm

DNN = deep neural network, SGD = stochastic gradient descent
@ choose a hypothesis space (set of trial functions), e.g. 2-layer neural networks

f(x,0) = Z aja('w;ra:), 0 = (aj,w,)

J=1

o is a nonlinear activation function, e.g. o(2) = max(z,0)
@ choose a loss function (to fit the data), e.g. “empirical risk”

Ra(0) = =S (fla,0) — Fr(a) = =3 4,(0)

n 4 .
J 7=1
© choose an optimization algorithm and parameters, e.g. gradient descent (GD)

- 1
0 =0, — n@z@——g (0
k+1 r—NVR () k 77n . V](k:)

J

Stochastic gradient descent (SGD):
Orr1 = 0 — VU, (0k)

91, J2, - - - are iid random variables uniformly drawn from 1,2, - - - n.

1. Stochastic control (Han and E (2016))

Model dynamics (analog of ResNet):

zi1 = 21+ gz, 1) + &,

z; = state, a; = control, & = noise.

T—1
{H‘j»m]E{Sz}{ ZCZ Zlaal Zl ‘|‘CT(ZT)}7
a [=0

Look for a feedback control:

@ Neural network approximation:

CLl(z) %CNLZ(Z’(QQ,ZZO,“' 7T_]-

Optimization problem (SGD applies directly)

T-1
{;I;iﬁl E{gl}{ Z iz, al(z1)6h)) + er(zr)}
1Fi=0 =0

subject to 2,11 = 21+ gi(z, a) + &.

Example: Energy Storage with Multiple Devices

The setting is similar to the above but now there are multiple devices, in which we do not
find any other available solution for comparison.

1.1-
o
‘?
c 1.0-
(o)
n
©
3]
g 0.9-
S
g
E 0.8-
o Number of devices
o
% 0.7- n=30
= — n=40
n=50
0.6-
10000 20000 30000 40000 50000

iteration

Figure: Relative reward. The space of control function is R"*2 — R3" for n = 30, 40, 50, with multiple equality
and inequality constrains.

October 16, 2020 7/ 44

2. Nonlinear parabolic PDE

ov 1
a—: = §O'O'T - Viv+u-Vo+ f(o' Vo), v(0,z)=g(z)
or equivalently with u(t,z) = v(T — t, x)
ou 1

EJF —00 :Viu+u-Vu+f(UTVU):Oa u(T,z) = g(z)

Reformulating as a stochastic optimization problem using backward stochastic differential
equations (BSDE, Pardoux and Peng (1990))

inf E|g(Xy) — Yol
Yo{Ztto<i<T |g< 0) 0‘

/ /
st. X;= X0+/ w(s, Xs) d8+/ o(s, Xs) dW,
0

YV, =Y, — /Otf(ZS) ds + /Ot(ZS)T dW.

The unique minimizer is the solution to the PDE with:

Vi=u(t,X;) and Z, =o' (t,X,) Vult, X;).

E, Han and Jentzen (Comm Math Stats 2017); Han, Jentzen and E (PNAS 2018)

October 16, 2020 8 /44

Stochastic control revisited

LQG (linear quadratic Gaussian) for d=100
dXt = 2\/th dt -+ \/éth,

Cost functional: J({m;}o<i<7) = [fo |5 dt + 9<XT>}
HJB equation:
O+ Au — \||Vul|5 = 0

u(t,z) = —~In (E{exp(—Ag(z + \@WT_t))}) .
A
100 ,:l | | | I? 4.7 -
: : e—e Deep BSDE Solver
S 4.6 - e—e Monte Carlo
@ 107 -
s o
= —
£ < 44
§ 1072+ T o
S : : S 4.3
s S
[}
'E 1073? 4.2
© B
o 4.1
10 -)) \ - 4.0 - | ‘ ‘ ‘ ‘ ‘
0 500 1000 1500 2000 0 10 20 30 40 50
Number of iteration steps lambda

Figure: Left: Relative error of the deep BSDE method for u(t=0, z=(0,...,0)) when A = 1, which achieves 0.17% in a runtime
of 330 seconds. Right: Optimal cost u(t=0,x=(0,...,0)) against different .

October 16, 2020 9 /44

Open source platform

“¥= frankhan91 Small fix.

configs Updated version based on TF2.0.
Y .gitignore First version.
[LICENSE Initial commit
[Y README.md Updated version based on TF2.0.
Y equation.py Updated version based on TF2.0.
Y main.py Updated version based on TF2.0.
[3 solver.py Small fix.
README.md

Deep BSDE Solver in TensorFlow (2.0)

Training

python main.py --config_path=configs/hjb_1q_d100.json

Jiequn Han et al.

8ec1353 on Dec 21, 2019) 6 commits

10 months ago
3 years ago
3 years ago
10 months ago
10 months ago
10 months ago

10 months ago

Deep BSDE solver in TensorFlow

deep-learning

partial-differential-equations

0 Readme

&8 MIT License

Releases

No releases published

Packages

No packages published

Languages

.]
® Python 100.0%

October 16,

3. DeePMD: Molecular dynamics with ab initio accuracy

Key question: V =7
Two ways to calculate V:

@ Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive (limited to about 1000 atoms).

@ Empirical potentials: basically guess what V' should be.
Efficient but unreliable.

Now: Use QM to supply the data needed to train a neural network model.

October 16, 2020 11 / 44

Accuracy comparable to QM for a wide range of materials and

molecules

standardized DeePMD-SE energy

A o o A

H"-'hl'@QNA

R S
Ta

(a) small molecules

4 (al) Aspirin

2

0
17 |
-af

(a2) Ethanol

/

-

/4

—_

—_

(a3) Malonaldehydg."

(a4) Naphthalene -]

/,ﬁ

(ab) Salicylic acid ."

(a6) Uracil

A

2 0 2 4

(e) pyridine

-4-2024

4| (el) Pyridine I

(e2) PyridineII

(b) MoS2 + Pt

(c) CoCrFeMnNi HEA

4| 1) MoS; slab (b2) MoS; slab | 4| €D Rand. seed1 -] | (c2) Rand. seed2 -~
+30 Pt cluster .~ + 55 Pt cluster ",-' o o
2 o . 2 ;
® f‘. /-’ /d
0 0
,f/ / ~ e
=2 s \\‘.’. oy 2 P »
a7 R PO a @ ; @
4 2 0 2 4 4 2 0 2 4
4| ®3) MoS, slab (b4) Bulk Pt
. +106Ptcluster/’,- /,— (d) Tioz
0 ‘_,-’ P 4| @D Anatase (d2) Brookite
,’l. / 2 d
, g | i 0 7
AL "\J&%{;hy o ,x‘/ Va -
4| &5 Prcluster (b6) Pt surface 4| 3 ﬁ'&
2 & 4 20 2 4
‘_," Kd 4| (@3) Rutile o
0 7’ g
/ 7 2 /
-2f . S S o v
al -) A
L ~ -2 ‘ . -
4 20 2 4 420 2 4 %
4| it
4 -2 0 2 4
(f) others
4 (f1) AL,O; (f2) Cu (3) Ge (f4) Si
2

/o
A &% =2
.) ¢
S L s "y : . : . .
4 2 0 2 4 4 -2 0 2 4 4 2 0 2 4 -4 -2 0 2 4 4 -2 0 2 4
_,

Linfeng Zhang, Jiequn Han, et al (2018)

standardized DFT energy

October 16, 2020

12 / 44

DeePMD simulation of 100M atoms with ab initio accuracy

Q)
AY2
319420
20 C°
114910
(a) AIMD + HPC; (b) DeePMD+1 (c) DeePMD+27360
GPU @ Home; GPUs @ Summit.

D. Lu, et al, arXiv: 2004.11658; W. Jia, et al, arXiv: 2005.00223

October 16, 2020 13 / 44

Open source platform

Find a repository...

deepmd-kit
A deep learning package for many-body potential energy representation and
molecular dynamics

®c++ BBiePL-30 Y99 vr2e5 (Des 113

Updated 2 days ago

dpdata
Manipulating DeePMD-kit, VASP, LAMMPS data formats.
¥30 w2 O1

@ Python B8 LGPL-3.0 Updated 6 days ago

dpgen
The deep potential generator

@®pPython BBIGPL-30 Y44 Yrs56 (D13 112 Updated 28 days ago

Linfeng Zhang, Jiequn Han, Han Wang et al.

Type: All ~

Language: All ~

Top languages

@® Python @ C++

People 2 >

3

October 16, 2020 14 / 44

4. Protein folding and the nonlinear multi-grid method

{z,;}= positions of the atoms in a protein
U({x;}) = potential energy (chemical bonding, Van der Waals, electro-static, etc).

1
—e P 8= (kgT)™!

“Minimize” U, or sample p = 7

Folding Trp-cage (20 amino acids, 38 collective variables)

Han Wang, Linfeng Zhang, Weinan E (2018)

October 16, 2020 15 / 44

5. Moment closure for Boltzmann equation

f=flzv1t), (UW)=U,W) = [g(v)f(x,v,t)dv

1
(9tf+v-wa:gQ(f), veER’, ze€QCR’

QU + Vg F(U,W:e) =0,
OW +V, - GU,W:e) = RU,W:e).

Mach = 3.5 Mach = 2.5 Mach = 1.5

51
_
\

Bulk Velocity

Normal Stress
o - [V w

Heat Flux
o

Jiequn Han, Zheng Ma,

October 16, 2020 16 / 44

time scale ™ e

h Macroscopic /'

il T .o [|

. 1 Free energy surface, kinetic operator .. '
Hs _ _ /"
Microscopic N
Classical MD g Polenhul energy surface, nuclear quantum dynamics, ... E
ns /’
ps DFT/HF : Densn-y/ orbital functional approximation . E

fs SIS ISIIAN : Many-electron wavefunction .. | length scale
Angstrom nm Mm mm m

Figure: Representative physical models at different scale and their most important modeling ingredients.

October 16, 2020 17 / 44

DeePHF, DeePKS
Reinforced dynamics

game theory (Han and Hu (2019), Ruthotto, Osher et al (2020))

Deep Ritz method (E and Yu (2018))
“deep Galerkin method” (really least square, Sirignano and Spiliopoulos (2018))
deep Galerkin method (Zang, Bao (2019))

@ many applications to chemistry, material science, combustion, non-Newtonian fluid
dynamics, control theory, finance, economics

°
°
@ deterministic control (Kang, Gong, et al (2019))
o
°

ML is used to generate new (reliable and interpretable) physical models (say for gas
dynamics, non-Newtonian fluids).

See E, Han and Zhang: Integrating ML with Physics-based Modeling, 2020.

October 16, 2020 18 / 44

Mathematical theory of machine learning

1. Understanding the mysteries about ML

@ Why does it work in such high dim?
@ Why is it so fragile? (require such extensive parameter tuning)

2. Seeking better formulations of ML

@ More robust: requires less parameter tuning
@ More general

Will discuss supervised learning: Approximate a target function using a finite dataset

October 16, 2020 19 / 44

Approximation of functions

Classical approximation theory: Approximation by piecewise polynomials (1m = number of
free parameters)

] @ —1/d
fle%fm If = meLz(X) < Coh HfHHO‘(X); ho~m™ Y

@ Sobolev (Besov) norm is the right quantity for the right hand side.
o They suffer from CoD: m ~ ¢~ (if a = 1) where ¢ is the error tolerance.

October 16, 2020 20 / 44

What should we expect in high dimension?

Example: Monte Carlo methods for integration
1
I(g) = Eapg(@), In(g) =—) gl))

{x;,j € [m]} is i.i.d samples of p.

E(1(9) ~ 1u(9))* = . var(g) = Earp(@) — (Earyg(@))

The best we can expect for function approximation in high D:

L1

m

. . |2
Anf R(F) = f Nlf =l S

@ What should be the norm || - ||, (associated with the choice of H,,)?

October 16, 2020 21 / 44

Approximating functions in high D: An illustrative example

Traditional approach for Fourier transform:

{w;} is a fixed grid, e.g. uniform.

1 = Fnll 2oy < Com™ | o)

“New" approach: Let 7 be a probability distribution and (o(z) = €'*)

flx) = /Rd a(w)e'“ D (dw) = By ora(w)e!@® = B, a(w)o(w! x)

Let {w;} be an i.i.d. sample of 7, f,(x) = %Z;n:l a(w;)e!wi®),

E|f(z) = fm(@)| = m var(f)

fm(x) = % Z;nzl a,ja(ij:U) = two-layer neural network.

October 16, 2020 22 / 44

Two-layer neural network model: Barron spaces

E, Ma and Wu (2018, 2019), Bach (2017)

Mo = {fu(x) = =) ajo(w]z)}, 0(2) = max(z,0)

m =
J
Consider the function f : X = [0, 1]? — R of the following form
flx) = / ac(w' x)p(da, dw) = E () Jac(w’z)], xe€ X
0
p is a probability distribution on = R x R+,

Ifls= inf (Ela*w]3])"

p:f(@)=E o (w!)

B={feC":||fls < oo}

Related work in Barron (1993), Klusowski and Barron (2016), E and Wojtowytsch (2020)

October 16, 2020 23 / 44

What kind of functions admit such a representation?

Theorem (Barron and Klusowski (2016)): If [, |w]|i | f(w)|dw < 00, where f is the
Fourier transform of f, then f can be represented as

Fl) = f() — (F(0) + 2 - V(0)) = / ac(w ") p(da, dw)

for © € [0,1]¢. Furthermore, we have

Etwrmslallwl <2 [Jolflfw)jdo

October 16, 2020 24 / 44

Theorem (Direct Approximation Theorem)

;
IF = fulia 5 1722

Theorem (Inverse Approximation Theorem)
Let

m

de 1
N gL Zaka wlx Z\ak| w2 < C2%,m € NT).
k 1

Let f* be a continuous functlon. Assume there exists a constant C' and a sequence of
functions f,, € N¢ such that

fm(x) = ()
for all x € X, then there exists a probability distribution p* on €2, such that

ff(x) = /aa(w x)p*(da, dw),

forallx € X and || f*||g < C.

October 16, 2020 25 / 44

Estimation error

Since we can only work with a finite dataset, what happens outside the dataset?

2.0 - :
"1 —— Target function
Interpolant
1.5 - e Training data
1.0
0.5 1
0.0 1
-1.0 -05 00 0.5 1.0

1

Figure: The Runge phenomenon: f*(x) = Tross?

October 16, 2020 26 / 44

Training and testing errors

In practice, we minimize the training error:

but we are interested in the testing error:

R(0) = Egrp(f(z,0) — f(2))’
H = a set of functions, S' = (x1, x9, ..., x,,) = dataset. Upto log terms,

. h(@)] ~ > hiw)

1=1

~ Rad5<7‘[>

sup
heH

where the Rademacher complexity of 7{ with respect to S is defined as

Sungz wl])

heHZl

1
Rads(#H) = —E

where {&;}"; are i.i.d. random variables taking values =1 with equal probability.

October 16, 2020 27 / 44

Complexity estimates

Theorem (Bach, 2017)
Let Fo ={f € B,||flls < Q}. Then we have

21n(2d)
n

Rads(Fg) < 2Q)

where n = |S/|, the size of the dataset S.

October 16, 2020 28 / 44

A priori estimates for regularized model

log(2d)

n

L,(0) = R,(0) + \ 16]]p, 0, = argmin L,(6)

where the path norm is defined by:

o 1/2
16]]» = <mZ Iakl2lwk|%>
k=1

Theorem (E, Ma, Wu, 2018)

Assume f*: X +— |0,1] € B. There exist constants Cy, such that for any 6 > 0, if A\ > C,
then with probability at least 1 — o over the choice of training set, we have

R, < Hf*H%gﬂLAIIf*HB [log(2d) \/10g(1/5>+10g(n>'
m n n

October 16, 2020 29 / 44

Approximation theory and function spaces for other ML models

@ random feature model: Reproducing kernel Hilbert space (RKHS)
@ Residual networks (ResNets): Flow-induced space (E, Ma and Wu (2019))

@ Multi-layer neural networks: Multi-layer spaces (E and Wojtowytsch (2020))

Up to log terms, we have

S o (|
R(f) S + NG

where m = number of free parameters, n = size of training dataset.

October 16, 2020 30 / 44

Better formulation: ML from a continuous viewpoint

Formulate a “nice” continuous problem, then discretize to get concrete
models/algorithms.

@ For PDEs, “nice” = well-posed.
@ For calculus of variation problems, “nice” = “convex”, lower semi-continuous.
@ For ML, “nice” = variational problem has simple landscape.

Key ingredients

@ representation of functions (as expectations)
@ formulating the variational problem (as expectations)
@ optimization, e.g. gradient flows

E, Ma and Wu (2019)

October 16, 2020 31/ 44

Function representation

@ integral-transform based:

f(x;0) :/Rd a(w)o(w’ z)r(dw)
—Era(w)o(w’)
=F (4.u0)~pa0 (W' T)

:Eu~p¢(m7 ’LL)

¢ = parameters in the model: a(-) or the prob distributions 7 or p

o flow-based:

d_z :g<7_7 Z? 6)
dr
9(1,2,0) =Epralw, 7)o(w' 2)

0 ={a;(-)} or {m} or {p;}

Optimization: Gradient flows

"Free energy” = R(0) = Epupu(f(2,0) — f*(x))?

flx) = /a(w)a(wTaz)w(dw) = Epra(w)o(w’ x)

Follow Halperin and Hohenberg (1977):
@ a = non-conserved, use “model A" dynamics:

00 _ R
ot da

e 7 = conserved (probability density), use “model B":

o
— -J =0
8t+v
J:m),v:—VV,Vzé—R.
o

October 16, 2020 33/ 44

Discretizing the gradient flows

@ Discretizing the population risk (into the empirical risk) using data

@ Discretizing the gradient flow

@ particle method — the dynamic version of Monte Carlo
@ smoothed particle method — analog of vortex blob method
@ spectral method — very effective in low dimensions

We can see that gradient descent algorithm (GD) for random feature and neural network
models are simply the particle method discretization of the gradient flows discussed before.

October 16, 2020 34 / 44

Discretization of the conservative flow for flow-induced

representation

Function representation: f(x;0) = E(,)~ ,00(w" x)

Particle method discretization:

1 1
pla,w,t) ~ — Z 5(aj(t),wj(t)) ~m Z 5uj<t)

m

gives rise to
Cl’U,j

dt — _vuj[<u17'” 7um>

where

T,) = RO, = (), fule) =3 aowle)

This is exactly gradient descent for (scaled) two-layer neural networks.

October 16, 2020 35/ 44

Why is continuous formulation better? No “phase transition”

Continuous viewpoint (in this case same as mean-field): f,,(x) =+ D ajo(
Conventional NN models: f,,(x) =)"

Test errors

J

aja(

Figure: (Left) continuous viewpoint; (Right) conventional NN models. Target function is a single neuron.

Ma, Wu and E (2020)

October 16, 2020 36 / 44

w; x)

Test errors

2.6

2.4

2.2

log1o(n)

2.0

1.8

20 25 30 35 40
logi0(m)

4.5

-0.6

-1.2

-1.8

2.4

-3.0

-3.6

—-4.2

—-4.8

-5.4

-6.0

The optimal control problem for flow-induced formulation

In a slightly more general form
dz
— =Ky~ z,u), z(0,x)==x
Z —Eudlzu), 202

z = state, p, = control at time 7.

The objective : Minimize R over {p;}

R({pe) = Eenslf(@) ~ £ @) = [(@)= F@)Pdn

where

flx)=1"2(1,2)

October 16, 2020 37 / 44

Pontryagin's maximum principle

Define the Hamiltonian H : R? x RY x Py(Q) :— R as
H(z,p, p) = Eueplp’ ¢(2,u)].

The solutions of the control problem must satisfy:
pr = argmax, Eg[H (21°, pi*, p)], V7 € [0,1],

and for each x, (z*, p!:®) are defined by the forward /backward equations:

dzl” z

dt = VpH = EUNM(';t) [qb(Zi)]

dp:®

- = —-V_.H = Euwp()[VT¢()pT J.

with the boundary conditions:

October 16, 2020 38 / 44

Gradient flow for flow-based models

Define the Hamiltonian H : R? x RY x Py(Q) :— R as
H(Z, p7 M) — Euwu[qub(zﬂ U)]

The gradient flow for {p.} is given by
Orpr(u,t) =V - (pr(u,t)VV(u; p)), V7 € 0,1],

where SH
V(U,p) — Ew[(s—p (Tw7p7' 7p7(7t>)]7

and for each x, (z*, p!:®) are defined by the forward /backward equations:

dzh” z
I = va —]EUNpT(';t)[¢(zf—’ ,’U,)]

d; = —V.H =Ey, (.[VLid(2E", u)pi®.

with the boundary conditions:

October 16, 2020 39 / 44

Discretize the gradient flow

e forward Euler for the flow in 7 variable, step size 1/L.
@ particle method for the GD dynamics, M samples in each layer

M
1
t t, t,
plm — plfl + LMZV ¢<zl+17ul+1<t))plf17 [= 07 .- '7L —1
j=1

Wil) g 107 (=, ul(1))p!).

This recovers the GD algorithm (with back-propagation) for the (scaled) ResNet:

Zz+1—2z+— E P(z1, w).

October 16, 2020 40 / 44

Max principle-based training algorithm

Qianxiao Li, Long Chen, Cheng Tai and Weinan E (2017):

Basic “method of successive approximation” (MSA):

Initialize: Y ¢ U

For k=0,1,2,---:
@ Solve
dzf? k k nk k
dT — va<zT7pT7 97’) ZO — V$
@ Solve

d
D GLHEEP), =20~ @)

o Set %! = argmax ycoH (2¥, p*,0), for each 7 € [0, 1]

Extended MSA:

~

1 1
H(z,p,0,v,q) = H(z,p,0) — 5)\||fv — f(z,0)|]* - §A||q +V.H(z,p,0)|*

October 16, 2020 41 / 44

Train Loss

Train Loss

[
o
| —

[
o
o

— SGD

= Adagrad
Adam

= E-MSA

400

=

— SGD

= Adagrad
Adam

— E-MSA

5000
K

10000

Test Loss

Test Loss

(b)

— SGD

= Adagrad
Adam

= E-MSA

=

— SGD

= Adagrad
Adam

— E-MSA

5000
K

10000

October 16, 2020

42 / 44

What have we really learned from ML?

Representation of functions as expectations:

@ integral-transform based:
f(@;0) = Egu)~pao(w’ x)

L
f(x) =g, omyai 0By omy - 0(Bgomal, g ola) - x))...)

o flow-based:

d
d_z :E(a,w>NpTaa(sz), z(0,x) =x
-

f(x,0) =1"2(1,)

and then discretize using particle, spectral or other numerical methods.

October 16, 2020 43 / 44

Concluding remarks

@ ML has changed and will continue to change the way we deal with functions, and this
will have a very significant impact in applied mathematics, and mathematics.

@ A reasonable mathematical picture for ML is emerging, from the perspective of
numerical analysis.

At the heart of the mathematical theory for machine learning is high dimensional
analysis.

Review articles (can be found on my webpage https://web.math.princeton.edu/ weinan):

@ Towards a mathematical understanding of machine learning: What is known and what is
not

@ Algorithms for solving high dimensional PDEs: From nonlinear Monte Carlo to machine
learning

@ Integrating machine learning with physics-based modeling

October 16, 2020 44 / 44

