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Outline

• Random Batch method for interacting particle systems  (classical 
N-body problems)

with Lei Li and Jian-Guo Liu

• Molecular dynamics and quantum Monte-Carlo

with Lei Li, Zhenli Xu, Yue Zhao and Xiantao Li

• Random Batch Method for N-body Schrodinger equation

with Francois Golse and Thierry Paul



Classical Interacting particle systems

• We use first-order binary 
interacting system as an 
example but the idea works for 
second order system 
(Newton’s second law type)

and more interacting particles

• The idea works with or without 
the Brownian motion term



Applications

• Physics and chemistry: molecular 
dynamics, 

electrostatics, astrophysics   

(stars, galaxies)  …

• Biology: flocking, swarming, 
chemotaxis, …

• Social sciences: wealth 
distribution, opinion dynamics, 
pedestrian dynamics …

• Data sciences: clustering,…

• Numerical particle methods for 
kinetic/mean-field equations



• Courtesy of P.E. Jabin



The computational cost

It is clear to be of                per time step   (or               if it is J particle 
interaction) 

Fast Multipole Methods were developed to address   this issue for binary  
interactions

We introduce the random batch methods to reduce the    computational cost 
to            per time step and it works for general interacting potentials



The random batch methods
(with Lei Li, SJTU; Jian-Guo Liu, Duke)

at each time step,

• random shuffling: group N particles randomly to n groups 
(batches), each batch has  p                                         particles

• particles interacting only inside their own  batches



Algorithm 1 (RBM-1)

• Let time step be    
discrete time



The computational cost is 

• Random shuffling algorithm:

for example the Durstemfd’s modern revision of Fisher-
Yates shuffle algorithm costs 

In MATLAB: randperm(N)

• The summation cost is               due to small batch size p 



RBM with replacement

• At each time step, draw a batch of size p randomly, interacting 
within this batch,  for n independent times



Remarks

• For these methods to be competitive over the deterministic solvers, 
the time step      needs to be independent of N (we will prove this for 
special V and K)

• For Coulomb interaction,   one can do a time splitting

then for p=2, the Coulomb interaction step can be solved analytically, 
avoiding stiffness due to singularity



Relevant approaches in other fields

• stochastic gradient (or coordinate) descent methods in machine 
learning (use small and random batches to do gradient descent)

• Direct simulation Monte-Carlo methods (Birds, Bobylev, Nanbu)—
based on binary collisions-- for Boltzmann equation; and its 
adaptation for mean-field equations of flocking models using random 
binary interactions (Albi, Pareschi, Carrillo)



Theoretical analysis for RBM-1 (with p=2)

This assumption guarantees that the evolution group of the  original deterministic  particle system is a 

contraction:  

In this case one needs                to  have a non-trivial equilibrium (otherwise all particles go to a single 
point)



Notations and definitions

• Solution of the original particle system:

• Solution of RBM-1 

• Assume all particles are indistinguishable

• Coupling

• Error process

• Norm of error

• Wasserstein-2 distance 



Error estimates

• Since C is independent of N,  therefore      is independent of N   



A key lemma (consistency)







Applications

• Dyson Brownian motion from random matrix theory

• Charged particles on sphere: Thomson’s problem (Brownian motion on sphere):  

F Coulomb 

• Stochastic dynamics of wealth (long range interaction, multiplicative noise)

• Opinion dynamics

• Data clustering and stochastic block model, reordering sparse matrix





















Some other applications/extensions

➢ Sampling:

Stein variational gradient descent

L. Li, Y. Li, J.-G. Liu, J.F. Lu

Sampling of Gibbs measure that corresponds to particle    systems with Lenard-

Jones potential 

L. Li, Z. Xu and X. Zhao

➢ Poisson-Boltzmann (particle formulation)

L. Li, J.-G. Liu, Y. Tang

➢ Control of synchronalization in particle system

E. Zuazua, etc.

➢ agend-based models for collective behavior (flocking, swarming, synchronization)

S.Y. Ha, S Jin, D. Kim, D. Ko

➢ Molecular dynamics

classical Coulomb:  Jin-L. Li-Z. Xu, Y. Zhao

quantum Monte-Carlo:  Jin-X. Li



Random batch Ewald method for particle systems with Coulomb interactions
(with Lei Li, Zhenli Xu and Yue Zhao)



RBM sampling in the Fourier space



Charge inversion in a salty environment

(All-atom simulation for 17736 water molecules) 



With L. Hong



Quantum Monte-Carlo for Boson systems  (with Xiantao Li)

• Hamiltonian

• Ground state

• Variational MC: based on over-damped 
Langevin equation

• RBM (p=2)



• Move 400 Markov Chains for 1000 steps

• Direct DMC vs RBM 



Diffusion QMC



Quantum N-body problem
(with Francois Golse and Thierry Paul, 
Ecole Polytechnique-Paris)

• The N-body Schrodinger equation

• Main challenge in quantum simulation:  large N, small 

• One can use RBM to reduce the computational cost of the interacting potential terms from

• But unlike the classical case, the right hand side of the Schrodinger equation is of            ,  thus any error introduced from 

the potential term will be amplified by N! so one cannot get an error for        uniformly in N.   Ever worse, the error is also 

divided by   



The RBM  (for p=2）

• Let                             be the random permutation of 
{1, 2, … N} 

• RBM operator:

• RBM Hamiltonian 



Mathematical setting

• :: The algebra of bounded operator on

• Density operator: 

• The N-body von Neumann equation

• Solution of Schrodinger: 

• Solution of von Neumann:  



The random Batch von Neumann equation

Analytic solution

Notation:

Then 



Difficulties to obtain an N-independent error

• error：

• What norm to use?  trace norm (used in justifying the mean-field limit of N-body Schrodinger 
(Bardos-Golse-Mauser, 2000)) does not give an N nor    -independent error;

• Quantity of interest (QoI)?   Reduced density operator.

• Loss of symmetry: if         has an integral kernel

such that

then          has the same symmetry.

This is no longer true for 



The one-body reduced density operator

• The 1-particle reduced density operator for         is          defined by its integral 
kernel

• Since the random batch potential                                         is not invariant under 

permutation, we define the   1-particle reduced density operator           of               

defined by its integral kernel

where         



The norm we use

The Wigner transform

The dual norm



The main result



Remark

The error estimate is



A new metric for density operators

This is analogous to Monge-Kantorovich or Wasserstein distance of 
exponent 1, note (Connes ‘89)

New idea: We need iterated commutators due to random batching



propositions



Summary of key new ideas in the proof

• Use of                                                to transform the commutator with V to that with x

• Choice of

This gives rise to 

this  helps to get rid of N

• The use of new metric and choice of A (Weyl operator) makes 

this helps to get rid of 



conclusions

The Newton and Schrodinger equations for N-particle system are two of the 
most fundamental equations in physics (with many other applications)
• We proposed simple random batch methods to reduce the computational 

cost of N-body interactions from             to
• We established rigorous error estimates uniform in N for classical particles, 

and uniformly in N and       for quantum systems 
• Used it for both classical MD (with Coulomb interactions) and QMC—

achieving the cost of O(N) with significant improvement on paralleliability
• Further questions (for both classical and quantum systems): convergence 

study for time-discretizations, convergence toward global equilibrium,  
theoretical justifications for mean-field and semiclassical limits, weaker 
regularity for the potentials, and other quantum systems, and more 
applications (QMC for Fermionic systems, for example)


