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QOutline

* Random Batch method for interacting particle systems (classical
N-body problems)

with Lel LI and Jian-Guo Liu

* Molecular dynamics and quantum Monte-Carlo
with Lel LI, Zhenl Xu, Yue Zhao and Xiantao Li

* Random Batch Method for N-body Schrodinger equation
with Francois Golse and Thierry Paul




Classical Interacting particle systems

* We use first-order binary

(% = v, interacting system as an

== )" Volx —x) example but the idea works for
=L second order system

“‘ | (Newton’s second law type)

and more Interacting particles

1

T ) K(X'-X))dt+0dB', i=1,...,N.

jij

dX' = -VV(X")dt +
* The Idea works with or without
the Brownian motion term



Applications

* Physics and chemistry: molecular
dynamics,

electrostatics, astrophysics
(stars, galaxies)

* Biology: flocking, swarming,
chemotaxis, -

* Social sciences: wealth |
distribution, opinion dynamics,

pedestrian dynamics -
* Data sciences: clustering,

* Numerical particle methods for
kKinetic/mean-field equations




* Courtesy of P.E. Jabin




The computational cost

ltisclear to be of O(IN?) pertimestep (or O(N”) ifitis] particle
Interaction)

Fast Multipole Methods were developed to address this issue for binary
Interactions

We introduce the random batch methods to reduce the computational cost
to O(N) pertime step and it works for general interacting potentials



The random batch methods
(with Ler Li, SJTU; Jian-Guo Liu, Duke)

at each time step,

* random shuffling: group N particles randomly to n groups
(batches), each batch has p (p <« N, often p = 2) particles

* particles interacting only inside their own batches



Algorithm 1 (RBM-1)

* Let time step be T
discrete time t,, = mT

Algorithm 1 (RBM-1)

1: formin1:[T/7] do

2: Divide {1,2,...,pn} into n batches randomly.

3: for each batch C, do

4: Update X"’s (i € C;) by solving the following SDE with ¢ € [t _1,tm)-

. : 1 . . :
dX' = —VV(X")dt + — Y K(X'—X7)dt+odB'

5: end for
6: end for




The computational cost IS O(nN)

* Random shuffling algorithm:

for example the Durstemfd’s modern revision of Fisher-
Yates shuftle algorithm costs O(N)

In MATLAB: randperm(N)

* The summation costis O(N) due to small batch size p



RBM with replacement

* At each time step, draw a batch of size p randomly, interacting
within this batch, for n independent times

Algorithm 2a (RBM-1')
1: for min 1:[T/7] do
2: for k from 1 to N/p do
3: Pick a set Cj of size p randomly with replacement.

4: Update X*’s (i € Ci) by solving the following SDE for time .

) . 1 . ) ,
dY' = —VV(Y")dt + = Y K(Y'-Yd)dt+odB’,

i.e., solve (2.7) with initial values Y*(0) = X, and set X* + Y'(7).
5: end for
6: end for




Remarks

* For these methods to be competitive over the deterministic solvers,
the time step 7 needs to be independent of N (we will prove this for

special V and K)

* For Coulomb interaction, one can do a time splitting
. 1 . .
T __ v _ J
dX i Z 'K(X X7 dt,
JjeC,j#1i
dX' = —VV(X") dt + odB".
then for p=2, the Coulomb interaction step can be solved analytically,
avolding stiffness due to singularity



Relevant approaches in other fields

* stochastic gradient (or coordinate) descent methods in machine
learning (use small and random batches to do gradient descent)

* Direct simulation Monte-Carlo methods (Birds, Bobylev, Nanbu)—
based on binary collisions-- for Boltzmann equation; and its

adaptation for mean-field equations of flocking models using random
binary interactions (Albi, Pareschi, Carrillo)



Theoretical analysis for RBM-1 (with p=2)

Assumption 3.1. Suppose V is strongly convex on R% so that z — V(z) — L|z|? is convex,
and VV, V2V have polynomial growth (i.e. |VV(z)| + |V?V(z)| < C(1 + |z|?) for some
g > 0). Assume K (-) is bounded, Lipschitz on R? with Lipschitz constant L and has bounded
second order derivatives. Moreover,

r > 2L. (3.1)

This assumption guarantees that the evolution group of the original deterministic particle system is a

contraction.
N

N
d . . . .
i Y X -YIP<—(r—20)) X' Y
1=1

1=1

In this case one needs o > 0 to have a non-trivial equilibrium (otherwise all particles go to a single
point)



Notations and definitions

* Solution of the original particle system: x:

* Solution of RBM-1 X
* Assume all particles are indistinguishable
* Coupling X0) = X0) =: X} ~ v

Bi(t) = B(t).

* Error process ZHt) = X'(t) — X'(¢t)
* Norm of error |v]] = VE|v|?

1/2
* \Wasserstein-2 distance Wz(u,v)=( inf / Iw—ylzdw>
R4 x R4

yell(p,v)



Error estimates

Theorem 3.1. Suppose Assumption 3.1 holds. With the coupling constructed above,

SUpHZl( n<c, — +72, (3.9)
t>0 p—l

where C is independent of N,p and t. Consequently, let ﬂg\})(t) be the first marginal for
(1.2) and ,uEV) be the first marginal for system (2.3). Then

sup Wa(uly (1), iy (1) < € 2 <Oy (3.10)

t>0 pP—

* Since C is independent of N, therefore T Is independent of N



A key lemma (consistency)

1 . . 1 . .
A - v A i xd
Xmm.i(X (1)) el Z -K(X X) = 2 ’K(X X7)
J€Cq,j#i VB E
Lemma 3.1. Consider p > 2 and a given fivred x = (z*,...,2"V) € RN, Then, for all i,
Exm.i(z) =0, (3.11)

where the expectation is taken with respect to the random division of batches. Moreover, the
vartance 1s given by

V(o) = (527 = 5 ) Ale) (3.12)

where

Az) = —— K" —27) — —— K" —2%) ] . (3.13)
jiii kikti



Mean-field limit

* The empirical measure

1 N

pn(t) == " 0w = Xi(1))

1=1

* As N — oo | under certain assumption on V and K, the
marginal distribution of particles converge to the
Fokker-Planck equation

1
Ouppe =V - (VV(2)p) = V - (uI 5 p) + 0" A



Error to the mean-field limit

N = x
uy 1
v
o (==}
T T
S =
~(1) ~
N K
N — @

Corollary 3.1. Suppose Assumption 3.1 holds, then
Wiy (), u(t)) < C(VT + N7H24)

for any e > 0.

(Cattiaux-Guillin-Malrieu)

* If the deterministic flow is not contracting, one may still get

Wa (i (), u(1)) < O(T) (V7 + N~V2), vi e [0,

(Dobrushin, Benachour-Roynette-Talay-Vallois, Jabin-Wang)



Applications

Dyson Brownian motion from random matrix theory

1 1 1
N (1) = —BA; () + — '+ ——dB;
dXj(t) = —BA;(t) + NA%,,. o 7B

Charged particles on sphere: Thomson's problem (Brownian motion on sphere):

F Coulomb | 1 - |
1 1 1
dX' = Ps m;F(X — X7y | dt+/2D1dBj

Stochastic dynamics of wealth (long range interaction, multiplicative noise)

k ‘ i yk i 5pi :1 2

Y Z.aymy Y¥)dt + v/2DY'dB b (y) Sy
le:k=£i

Opinion dynamics

dy' = —

Data clustering and stochastic block model, reordering sparse matrix



The Dyson Brownian motion

[ ]

The eigenvalues of a Hermitian matrix valued Ornstein-Ulenbeck process
satisfies Dyson Brownian motion:

1 1 1
IN:(t) = —BN;(t) + — It + ——dB; 1< i< N
d\;(t) ﬁl?()+Nk§;,jAj/\k:( +\/N( ; (1<j<N)

(Tao, Erdos-Yau)
It has a mean-field [imit

[ ]

ohp(z,t) + Op(p(u — Bx)) =0, u(x,t) =n(Hp)(x,t)

: . _ om2
* Analytical solution (for 8 =1) plx,t) = V20(t) — @ Loty =1+
o(t)r ’
. o 1
* |nvariant measure (semi-circle law): ple) = =2 — a?

T



Comparison between RBM-1 and RMB-r
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Figure 4: The RMB-1 simulation of the Dyson Brownian motion. The empirical densities at
various times are plotted. The red curve is the density distribution predicted by the analytic
solution (4.8). The black curve is the equilibrium semicirele law (4.7).
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Figure 5: The RBM-r simulation of Dyson Brownian motion. The 'time’ is regarded as
7 = 1073 for N/2 iterations. The red curve is the density distribution predicted by analytic
solution (4.8). The black curve is the equilibrium semicircle law (4.7).



Charged particles on sphere

Thomson problem is to determine the stable configuration of N electrons
on a sphere. When N becomes large, this could lead to the so-called
spherical crystals. The configuration may have some meta-states (local
minimizers of the energy surface). When the number of particles is large,
the spherical crystals have defects due to the topology of the sphere.

In the N — oo limit, the mean field energy

1 1
= _ z)p(y)dS,dS
2~//S><S’ |x_y|p( )p(y) y

is minimized

In the overdamped limit and with suitable scaling, we then have
interacting particle system on sphere

dX' =Pg ( Yy FP(X? ) dt + /2D,dB%  F: Coulomb

JFi



RBM-r (consider b, =0 )

= Randomly picking two indices. Then for t € |t t, ) solve

m—17

. Xt — XJ
dXt = Z X XIP dt,
7:1(2,7)=1

where (7, 7) = 1 means that i, 7 are in the same batch.

= Project the obtained points back to the sphere by dividing its
magnitude.
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Figure 6: Charged particles on sphere. The first row is for N = 60 while the second row
corresponds to N = 800. The first column shows the distributions at the end of simulation
while the second column shows how the energy changes with "time’.



Stochastic dynamics of wealth

* A mean-field game model by Degond, Liu and Ringhofer:
Considering N market agents with two attributes:
the economic configurations X* and its wealth yJ

Xt =V(X"Y?),
i 1 i i iipi (3
Ay’ = —— 0 pW(IXE— XR)O, (Y —YF)dt + V2DY dB. (3)
k:k+#i
The second equation describes the evolution of the wealth containing two
mechanisms: trading model and geometric Brownian motion.



Comparison with equilibrium distribution of the mean-field equation for
éy) = %yz. (D=1, multiplicative noise and long-range potential)

Figure 8: Wealth distribution for stochastic dynamics



Stochastic opinion dynamics (for consensus of opinions)

An opinion dynamics (Motsch-Tadmor)
X —aﬁ;ab(lXj—X (X7 —X*)

Here, ¢ is called the influence function.

* We consider a stochastic (RBM-1) version

d _ . . . .
2 X = ag(| X0 - X7|)(X? — X¥) + end B’
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Figure: Stochastic opinion dynamics versus time. Plots of three experiments of the
stochastic dynamics with the same initial data. No Brownian motion (e = 0).

"time’

Figure: Opinion dynamics versus time. The first figure has no Brownian motion.
The second is with €y = N~1/3. The two figures are with the same initial data.



Some other applications/extensions

» Sampling:
Stein variational gradient descent
L Ly, Y L, -G Liu JF. Lu
Sampling of Gibbs measure that corresponds to particle systems with Lenard-
Jones potential
L. L, Z Xuand X. Zhao
» Poisson-Boltzmann (particle formulation)
L. L J-G. Lu Y. Tang
» Control of synchronalization in particle system
E. Zuazua, etc.
» agend-based models for collective behavior (flocking, swarming, synchronization)
S.Y. Ha SJin, D. Kim, D. Ko
» Molecular dynamics
classical Coulomb: Jin-L. Li-Z Xu, Y. Zhao

quantum Monte-Carlo: Jin-X L/



Random batch Ewald method for particle systems with Coulomb interactions
(with Ler Li, Zhenl Xu and Yue Zhao)

E = Y k(b—bo)+ > ke(@— 00>+ > kufcos(nw + ) + 1]

bonds

angles torsions
H > Ay By H Y 44, Long Range
T r [ 2
atom pairs L) w atom pairs O(N)
. . Continuum solvent nf:c;(:i‘
Short range Hydrophobic effect is roughly

proportional to surface area

cut-off O(N)

. ‘—’ ~o .
; ;
: !
1
)
¥ ~ P f! S
5 y 3 &
o ®f
a' ~
i ®
e 9 W |\ ®
N ’
~ / d ~ ,
S - oAl o

. ' . . ' ' } Distance uL

o L B
bond length or 3-atom angle

P

torsion angle

Monte Carlo: Sampling from Boltzmann distribution
Molecular dynamics: Solving the Newton’s equation



RBM sampling in the

» Ewald splitting is used:

Split potential by a short-range and a long-range parts:
1 erfc(ar) erf(ar)

; - r r
Electrostatic potential due to the charges becomes,
u z qierfc(a|r; —r + nL|)
n
N

JOEDY

= |r; —r + nlL|
=
_ 12
+4_szzexp< k2/40%) arry
V ¢ k2
i=1 k+0

Fourler space

TR 12 101y (o=t (k)

F
* Vi

= -V, U=— Z
k0
Tij +nlL -

— Y 'q;G(|ri; + nL =
qzq_? (|Tj+n |)|T1J+'n,L|

jn

i1+ Fio.

where we recall r;; = r; — r;, pointing towards particle j, and

Gr) = erfcgq;/&r) N 2\/52:7"2‘
p
. Sdrkyq; ik
Fi~ F;) = — E 2 V2 Im(e™"* " p(ky))



Charge inversion In a salty environment

(All-atom simulation for 17736 water molecules)

o r. N Time (s)
Ewald (¢ =0 mM) 0.0014 | 90.0 8.7 16698
RBE (¢ =0 mM) 0.0072 | 40.0 | p =100 1167
Ewald (¢ =196 mM) | 0.0014 | 90.0 8.7 137217
RBE (¢ =196 mM) | 0.0072 | 40.0 | p =100 15258

Table 2: Computational time per leb simulation steps. The RBE samples from all frequen-

cies and it shows p values in the n,. column.
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Figure 3: CPU time per step for the classical Ewald and the RBE methods with increasing

N
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With L. Hong

SJTU II supercomputer

10,000,000
Water molecules

100nm

Much higher parallel efficiency An order of magnitude faster

(computational speed)

1 107 —-ReE P=50
D e ~1-PPPM
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g 2
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Quantum Monte-Carlo for Boson systems (with Xiantao Li)

N
H=) =5 Bnt Y Wri=rj)+) Ve (ri). * Hamiltonian

f  @Hdr, -dry
R  Ground state

E:ngn
[Py

E=(Eus() = [ pr)Ew(rdr, p(r)[@o(r) Funlr) =

J(r) :Zuuri_”j” p(r) xe 2V, V=—Ind,= —Zlogcp(r,:) ‘I‘%ZZMU’?_’?D
i I j#

N : : .
dr;=Vlogp(r;)dt =Y V,u([ri—ri|)dt +dWi(t), 1<i<N. * Variational MC: based on over-damped
= Langevin equation
ri(t)+Vlogp(r;) At+ (N 1)V, u(|r;—r| ) At+ AW,
(1) + Vlog(r))At-+ (N—1)V, u(|r; —r;| At + AW;. * RBM (p=2)

!

fi(erAf)
{Fj(f+Af)



* Move 400 Markov Chains for 1000 steps

Table 2: Comparison of several VMC methods
Metropolis- | Euler- Random
Hastings Maruyama Batch
CPU time for a 1000-step sampling period | 1503 469 Hh4
9

* Direct DMC vs RBM

CPU time

871 & Random Batch
¢ Direct DMC
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Figure 8: A comparison of the CPU runtime (in seconds) for running 1000 steps of DMC.



Quantum N-body problem .
(with Francolis Golse and Thierry Paul, -, | <=y
Ecole Polytechnique-Paris) FOA s geun”

LA RECHL
DEL'X

The N-body Schrodinger equation

ihd U (t, a1, aon) = HN (21, 2y), | _ =0™

N
Hn= 3 —5h A, vy D Ve —n)
m=1 1<l<n<N

Main challenge in quantum simulation: large N, small £

* One can use RBM to reduce the computational cost of the interacting potential terms from O(N?) to O(N)

But unlike the classical case, the right hand side of the Schrodinger equation is of O(/N') thus any error introduced from
the potential term will be amplified by N! so one cannot get an error for ¥ uniformly in N. Ever worse, the error is also

divided by A



The RBM (for p=2)

* let 01,02,...,04,... pbe the random permutation of
{1, 2’ N}

* RBM operator:

1 i {ln) = {0

0 otherwise,

ﬁ]_l_l(Qk—l),O'[ﬁ]_ﬂ(gk)} for some k£ =1

T:(l,n) ::{

* RBM Hamiltonian

N
Hy(t):= > -3h°A,, + > Tu(l,n)V(x —xn)

m=1 1<l<n<N

.....



Mathematical setting

9:=L*(R4C) oy =9V = LA((R)N;C)
L($): The algebra of bounded operator on §

* Density operator: R(t) = [W(t)){(W(t)]

The N-body von Neumann equation

ihd,R(t) = HNR(t) - R(t)Hn = [Hn, R(1)], R(0)=R™

Solution of Schrodinger: U(t, )= e~ THN yin

Solution of von Neumann:  R(t) = ¢ "H~/h gingitHn/h



The random Batch von Neumann equation

ihO R(t) = [Hy(t), R(t)],  R(0)=R™
Analytic solution
R(t) = U(t,0)R(0)U(0,1)
where, for each 0 < s <t,

[t/At]-1

_i(s-[s/At]At) iAt i(t— [t/At]At) _t
U(s, 1) = e SEREDHN(£7180 T (SREHGAD EN(ERON

J=[s/At]

U(t,s):=U(s,t)".
Notation:  U(t,s)A:=U(t,s)AU(s,t)

Then R(t) =U(t,0)R™ t>0



Difficulties to obtain an N-independent error

error:  R(t) - Rit)

What norm to use? trace norm (used in justifying the mean-field limit of N-body Schrodinger
(Bardos-Golse-Mauser, 2000)) does not give an N nor A -independent error;

IBR1 (1)~ Ra()]1 = sup [txace((BF(D) ~ (D)4 <=MV - (1 + T|1/|Lm(B,f))

Quantity of interest (Qol)? Reduced density operator.
Loss of symmetry: if R has an integral kernel

in — .an .
T =T (5C1,...,33N,y1,...,yN)

suchthat 7" (@1, o Ny, - YN) =1 (B (1) o T (N) Yo (1) - -+ Yo (N))
then R(t) has the same symmetry.

This is no longer true for R(t)



The one-body reduced density operator

. Ihe 1I particle reduced density operator for R(t) is R1(t) defined by its integral
erne

ri(t,x,y) := f(Rd)N_l r(t;x, 20,0 2N Y 22, .., 2N )2 .. d2N

* Since the random batch potential 2. Te(l,n)V (- an) is not invariant under

1<l<n<N

permutation, we define the 1-particle reduced density operator Rq(t) of Ri(t)
defined by its integral kernel

_ 1 J ~ :
Tt z,y) = N - D fRd)N_1 m(t; Zjnlx], Zin(y])dZs n

where

ijN[JZ] =21y Rj=13 Ly 2541 -+ 3 RN de7N = d21 .. .de_1d2j+1 .. .dZN



The norm we use

The Wigner transform
WalS1(@,€) = gdye [ s+ bhy,z - Shy)e™SVdy
The dual norm

aeC,(RYxR?), and

f
ax 1070, al| o (raxray <1
el +]51>0

fM:sup{ .. 1@ ©aleOdads

M>1



The main result

Theorem 2.1. Assume that N > 2 and that V € C(R?) is a real-valued function
such that

V(z)=V(=2) forallzeR?, lim V(2)=0, and fRd(1+|w|2)|f/(w)|dw<oo_

|z|—>—+00

Then there exists a constant vq > 0 depending only on the dimension d of the
configuration space such that, for each t >0, one has

IWh[ERN1(t)] = Wal[Ry1(O)]1ll-(a/21-3
< 2y ALeSt VALV A (V) (2 + 3t A (V) max(1, At) + 4V/AL(V)LAL) .

where E is the mathematical expectation and At the reshuffling time-step in the
definition of the random batch Hamiltonian (3), while

L) = gy [ WPV @I, AV =y [

where wW" s the v-th component of w.

(14)

d
W[V (w)l]dw
1

=



Remark

The error estimate Is

(a) independent of N, and
(b) uniform in A € (0,1).



A new metric for density operators

Definition 4.1. For R, S € D($), set D :=—id and

(

dy(R,S):=sup-

\

| traceg ((R—-S)A)

AeL(®) and for all 1 < p,v <d )
h|[z" All+R[[AD,, A]| + [ [=".[2",A]]l
+|[hD,, [ AN+ [ D, [h Dy, Al]| <5k,

This 1s analogous to Monge-Kantorovich or Wasserstein distance of
exponent 1, note (Connes ‘89)

MK (R,S) =

sup
Ael(9)

[traces ((R—-S)A)|.

max,,<q ([ Al [[R D, . Al<h

New idea: We need iterated commutators due to random batching

v




DIroposItioNs

[IWrlR] = Wr[S]lll-[a/21-3 < vadn(R, S)

dh(EﬁN,l (t), Rn1(t)) SlOA(V)QtAt max(1, At)eﬁt max(1,VdL(V))
+ 10A(V)(1 + 2VdL(V )t At) Ate! max(12VAL(V))



summary of key new ideas Iin the proof

 Useof [[f.T]]<A(f) max I[z",T]] to transform the commutator with V to that with x

* Choice of By(t) = % Y A
k=1

This gives rise to

(ot LAl = [=ihO,n , J Al =0 for all p=1,....d and all m =1,..., N unless m = k.

T’

this helps to get rid of N

* The use of new metric and choice of A (Weyl operator) makes

[z, A]| = O(h) and ||[-ih0,n , JiA]| = O(h) for allm =1, ..., Nand p=1,....d,

so that M (t) = O(h)

this helps to get rid of 4 -



conclusions

The Newton and Schrodinger equations for N-particle system are two of the
most fundamental equations in physics (with many other applications)

We proposed simple random batch methods to reduce the computational
cost of N-body interactions from O(N?) to O(N)

We established ri%orous error estimates uniform in N for classical particles,
and uniformly in N and A - for quantum systems

Used it for both classical MD (with Coulomb interactions) and QOMC—
achieving the cost of O(N) with significant improvement on paralleliability

Further questions (for both classical and quantum systems): convergence
study for time-discretizations, convergence toward global equilibrium,
theoretical justifications for mean-field and semiclassical limits, weaker
regularity for thegotentlals,_an_d other quantum systems, and more
applications (QMC for Fermionic systems, for example)



