The Yau-Yau Method for Nonlinear Filtering Problems

Shing-Tung Yau

Department of Mathematics Harvard University

2021

Joint work with Mei-Heng Yueh, Wen-Wei Lin, and Stephen Shing-Toung Yau

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems

< □ > < □ > < □ > < □ > < □ > < □ >

æ

Introduction

- Nonlinear Filtering Problems
- Duncan–Mortensen–Zakai Equation
- The Kolmogorov Equation

2 Numerical Method

- Algorithm for the Filtering Model
- Finite Difference Schemes
- Numerical Experiments

| 4 回 🕨 🖉 🕨 🖉 🕨

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

- In 1961, Kalman and Bucy first established the finite-dimensional filter for the linear filtering model with Gaussian initial distribution, which is highly influential in modern industry.
- Since then filtering theory has proved useful in science and engineering, for example, the navigational and guidance systems, radar tracking, sonar ranging, and satellite and airplane orbit determination.
- Despite its usefulness, however, the Kalman–Bucy filter is not perfect.

<ロト < 聞 > < 回 > < 回 > :

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

- Its main weakness is that it is restricted to the linear dynamical system with Gaussian initial distribution.
- Therefore there has been tremendous interest in solving the nonlinear filtering problem which involves the estimation of a stochastic process

 $x = \{x_t\}$ (called the signal or state process)

that cannot be observed directly.

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

 Information containing x is obtained from observations of a related process

 $y = \{y_t\}$ (the observation process).

• The goal of nonlinear filtering is to determine

the conditional density $\rho(t, x)$ of x_t

given the observation history of $\{y_s : 0 \le s \le t\}$.

ヘロア ヘロア ヘビア・

-

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

- In the late 1960s, Duncan, Mortensen, and Zakai independently derived the Duncan–Mortensen–Zakai (DMZ) equation for the nonlinear filtering theory, which the conditional probability density ρ(t, x) has to satisfy.
- The central problem of nonlinear filtering theory is to solve the DMZ equation in real-time and in a memoryless way.

<ロト < 聞 > < 回 > < 回 > :

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

- In 2000, we proposed a novel algorithm to do just that¹.
- Under the assumptions that the drift terms $f_i(x)$, $1 \le i \le n$, and their first and second derivatives, and the observation terms $h_i(x)$, $1 \le i \le m$, and their first derivatives, have linear growth, we showed that the solution obtained from our algorithms converges to the true solution of the DMZ equation.

¹ S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory I. Mathematical Research Letters, 7:671–693, 2000.

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

 Although the above approach is quite successful, so far it cannot handle the famous cubic sensor in engineering in which

$$f(x) = 0$$
 and $h(x) = x^3$.

 It is well known that there is no finite-dimensional filter for the cubic sensor.

イロト イヨト イヨト イヨト

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

 We later showed that under some mild conditions (which essentially say that the growth of |*h*| is greater than the growth of |*f*|), the DMZ equation admits a unique nonnegative solution

$$u \in W_0^{1,1}((0,T) \times \mathbb{R}^n)$$

which can be approximated by solutions u_R of the DMZ equation on the ball B_R with $u_R|_{\partial B_R} = 0$.

• The rate of convergence can be efficiently estimated in the L¹ norm.

<ロト < 回 > < 回 > < 回 > < 回 > .

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

- The solution u_R can in turn be approximated efficiently by an algorithm depending only on solving the time-independent Kolmogorov equation on B_R.
- Our algorithm can solve practically all engineering problems, including the cubic sensor problem in real-time and in a memoryless fashion.

・ロト・日本・ ・ ヨト・ ・ ヨトー

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Nonlinear Filtering Problems

- Specifically we show that the solution obtained from our algorithms converges to the solution of the DMZ equation in the L¹ sense.
- Equally important, we have a precise error estimate of this convergence, which is important in numerical computation.

(日)

э

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Signal–Observation Model

The (nonlinear) filtering problem considered here is

$$\begin{cases} dx(t) = f(x(t)) dt + dv(t), & x(0) = x_0, \\ dy(t) = h(x(t)) dt + dw(t), & y(0) = 0 \end{cases}$$
(1)

where

- $x(t) \in \mathbb{R}^N$: state.
- $y(t) \in \mathbb{R}^M$: measurement.
- $f : \mathbb{R}^N \to \mathbb{R}^N$: (nonlinear) drift term.
- $h: \mathbb{R}^N \to \mathbb{R}^M$: (nonlinear) observation term.
- $v(t) \in \mathbb{R}^N$, $w(t) \in \mathbb{R}^M$: independent Brownian motions.

<ロ>

2

Nonlinear Filtering Problems Duncan-Mortensen-Zakai Equation The Kolmogorov Equation

Signal–Observation Model

x(t) : signal / state

y(t): observation / measurement

Goal

Estimate the state x(t) by a given history of observations

 $\{y(\tau) \mid \tau \in [0, t]\}, \text{ for } t \in (0, T].$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … の Q @

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

Duncan–Mortensen–Zakai (DMZ) Equation (1960s)

Let $\sigma(t, x)$ be an unnormalized conditional probability density of x(t) given $\{y(\tau)|\tau \in [0, t]\}$. The DMZ equation is given by

$$\mathrm{d}\sigma(t,x) = L_0\sigma(t,x)\,\mathrm{d}t + \sum_{i=1}^n L_i\sigma(t,x)\,\mathrm{d}y_i(t), \quad \sigma(0,x) = \sigma_0,$$

where

$$L_0 = \frac{1}{2}\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2} - \sum_{i=1}^n f_i \frac{\partial}{\partial x_i} - \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} - \frac{1}{2}\sum_{i=1}^m h_i^2,$$

and for i = 1, ..., m, L_i is the zero degree differential operator of multiplication by h_i .

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

The Robust DMZ Equation (Davis, 1980s)

Define the new unnormalized density as

$$u(t,x) = \exp\left(-\sum_{i=1}^m h_i(x)y_i(t)\right)\sigma(t,x).$$

The robust DMZ equation² is given by

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = L_0 u(t,x) + \sum_{i=1}^m y_i(t) [L_0, L_i] u(t,x) \\ + \frac{1}{2} \sum_{i,j=1}^m y_i(t) y_j(t) [[L_0, L_i], L_j] u(t,x), \\ u(0,x) = \sigma_0, \end{cases}$$

where $[\cdot, \cdot]$ denotes the Lie bracket.

²M. H. A. Davis, On a multiplicative functional transformation arising in nonlinear filtering theory, Z. Wahrsch. Verw. Gebiete, 54:125–139, 1980. ← □ → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) → ← (□) →

The Robust DMZ Equation (Yau and Yau, 2000s)

The robust DMZ equation¹ is reformulated as

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup u(t,x) + (-f(x) + \nabla K(t,x)) \cdot \nabla u(t,x) \\ + \left(-\nabla \cdot f(x) - \frac{1}{2} |h(x)|^2 + \frac{1}{2} \bigtriangleup K(t,x) \\ -f(x) \cdot \nabla K(t,x) + \frac{1}{2} |\nabla K(t,x)|^2 \right) u(t,x), \\ u(0,x) = \sigma_0(x), \end{cases}$$
(2)

where $K = \sum_{i=1}^{m} y_i(t) h_i(x), f = (f_1, ..., f_n)^{\top}, h = (h_1, ..., h_m)^{\top}.$

Nonlinear Filtering Problems Duncan-Mortensen-Zakai Equation The Kolmogorov Equation

The Robust DMZ Equation

Theorem (Yau and Yau³)

Consider the filtering model (1). For any T > 0, let u be a solution of the robust DMZ equation (2) in $[0, T] \times \mathbb{R}^N$. Assume

$$-\frac{1}{2}|h|^2 - \frac{1}{2}\bigtriangleup K - f \cdot \nabla K + \frac{1}{2}|\nabla K|^2 + |f - \nabla K| \le c_1.$$
(3)

Let $R \ge 1$ and u_R be the solution of the following DMZ equation on the ball B_R :

$$\sup_{0 \le t \le T} \int_{|x| \ge R} u(t, x) \le e^{-\sqrt{1+R^2}} e^{(c_1 + \frac{N+1}{2})T} \int_{\mathbb{R}^N} e^{\sqrt{1+|x|^2}} u(0, x).$$

Remark

The above theorem says that we can choose a ball large enough to capture almost all the density.

³S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory II. SIAM. J. Control Optim., 47(1):163–195, 2008.

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

The Robust DMZ Equation

Theorem (Yau and Yau³)

Remark

The above theorem says that we can approximate u by u_R .

³S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory II. SIAM. J. Control Optim., 47(1):163–195, 2008.

Nonlinear Filtering Problems Duncan–Mortensen–Zakai Equation The Kolmogorov Equation

The Kolmogorov Equation (Yau and Yau, 2008)

The density $u(\tau_k, x)$ can be computed by $\tilde{u}_k(\tau_k, x)$, where $\tilde{u}_k(t, x)|_{[\tau_{k-1}, \tau_k]}$ satisfies the Kolmogorov equation³

$$\begin{cases} \frac{\partial \widetilde{u}_k}{\partial t}(t,x) = \frac{1}{2} \bigtriangleup \widetilde{u}_k - f(x) \cdot \nabla \widetilde{u}_k - \left(\nabla \cdot f + \frac{1}{2} |h|^2\right) \widetilde{u}_k, \ t \in [\tau_{k-1}, \tau_k],\\ \widetilde{u}_k(\tau_{k-1}, x) = \exp\left\{\left(y(\tau_{k-1}) - y(\tau_{k-2})\right) \cdot h(x)\right\} \widetilde{u}_{k-1}(\tau_{k-1}, x),\\ \widetilde{u}_1(0, x) = \sigma_0(x) \exp\left\{y(0) \cdot h(x)\right\}, \ k = 2, \dots, N_{\tau}.\end{cases}$$

Then,

$$u(\tau_k, x) = \exp\left(-\sum_{j=1}^m y_j(\tau_{k-1})h_j(x)\right)\widetilde{u}_k(\tau_k, x).$$

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Algorithm of Yau-Yau Method for the Filtering Model

Recall the *N*-dimensional filtering model (1):

- $\begin{cases} dx(t) = f(x(t)) dt + dv(t), & x(0) = x_0, \\ dy(t) = h(x(t)) dt + dw(t), & y(0) = 0. \end{cases}$
- **()** A bounded domain Ω is given by an *N*-cell, e.g., $[-10, 10]^N$.
- 2 An initial density u(0, s) is given by, e.g., $\mathcal{N}(x_0, 0.2)$.
- 3 Set $\tau_0 = 0$. Once a new measurement $y(\tau_k)$ is observed, we update $u(\tau_k, s_j) \leftarrow \exp\left\{[y(\tau_k) - y(\tau_{k-1})]^\top h(s_j)\right\} u(\tau_k, s_j).$

• For $t \in [\tau_k, \tau_{k+1})$, we solve the Kolmogorov on $\{t\} \times \Omega$:

$$\begin{cases} \frac{\partial u}{\partial t}(t,s) = \frac{1}{2} \bigtriangleup u(t,s) - f(s) \cdot \nabla u(t,s) - \left(\nabla \cdot f(s) + \frac{1}{2} \|h(s)\|_2^2\right), \\ u(t,\partial\Omega) = 0. \end{cases}$$

() The estimate of the state is computed by $x(t) \approx \int_{\Omega} s \, du(t, s)$.

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Finite Difference Schemes

Let $\{t_n\}_{n=1}^{N_t}$ and $\{s_j\}_{j=1}^{N_s}$ be a uniform partition of [0, T] and [-R, R] with step size Δt and Δs , respectively. Then

$$\begin{split} \frac{\partial u}{\partial s^2}(t_n,s_j) &= \frac{\alpha}{(\Delta s)^2} \left(u(t_{n+1},s_{j+1}) - 2u(t_{n+1},s_j) + u(t_{n+1},s_{j-1}) \right) \\ &+ \frac{1-\alpha}{(\Delta s)^2} \left(u(t_n,s_{j+1}) - 2u(t_n,s_j) + u(t_n,s_{j-1}) \right) + O((\Delta s)^2), \\ \frac{\partial u}{\partial s}(t_n,s_j) &= \frac{\beta}{2\Delta s} \left(u(t_{n+1},s_{j+1}) - u(t_{n+1},s_{j-1}) \right) \\ &+ \frac{1-\beta}{2\Delta s} \left(u(t_n,s_{j+1}) - u(t_n,s_{j-1}) \right) + O(\Delta s). \end{split}$$

Subscripts Explicit Euler Method: $\alpha = 0$, $\beta = 0$.

- Implicit Euler Method: $\alpha = 1$, $\beta = 1$.
- 3 Quasi-Implicit Euler Method (QIEM): $\alpha = 1, \beta = 0$.
- Crank-Nicolson Method: $\alpha = \frac{1}{2}, \beta = \frac{1}{2}$.

<ロト < 回 > < 回 > < 回 > < 回 > <

3

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Discrete Operators

Let $\{t_n\}_{n=1}^{N_t}$ and $\{s_j\}_{j=1}^{N_s}$ be a uniform partition of [0, T] and [-R, R]with step size Δt and Δs , respectively. Then $\{s_j\}_{j=1}^{(N_s)^N} := \left(\{s_j\}_{j=1}^{N_s}\right)^N$ is a partition of $[-R, R]^N$. The discretization of \triangle and $f \cdot \nabla u$ are defined by

$$\mathcal{L}_{N_s}^{(N)} = \sum_{d=1}^{N} \left(\mathsf{I}_{(N_s)^{N-d}} \otimes \mathsf{L}_{N_s} \otimes \mathsf{I}_{(N_s)^{d-1}} \right), \tag{4}$$

and

$$K_{N_{s}}^{(N)} = \sum_{d=1}^{N} \left\{ \text{diag} \left(f_{d}(s_{j}) \right)_{j=1}^{(N_{s})^{N}} \left(\mathsf{I}_{(N_{s})^{N-d}} \otimes K_{N_{s}} \otimes \mathsf{I}_{(N_{s})^{d-1}} \right) \right\}, \quad (5)$$

respectively, where I_{N_s} denotes the identity matrix of size $N_s \times N_s$ and

$$L_{N_{s}} = \frac{1}{(\Delta s)^{2}} \begin{bmatrix} -2 & 1 & & \\ 1 & -2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & -2 \end{bmatrix}_{N_{s} \times N_{s}} \text{ and } K_{N_{s}} = \frac{1}{2(\Delta s)} \begin{bmatrix} 0 & 1 & & \\ -1 & 0 & \ddots & \\ & \ddots & \ddots & 1 \\ & & -1 & 0 \end{bmatrix}_{N_{s} \times N_{s}} .$$

QIEM for Kolmogorov Equation (Yueh, Lin, Yau, 2014)

The QIEM for Kolmogorov equation is nonnegativity preserving⁴. Denote the vector $[u(t_n, s_j)]_{j=1}^{(N_s)^N}$ as u^n . The QIEM for Kolmogorov equation is formulated as

$$\frac{u^{n+1}-u^n}{\Delta t}=\frac{1}{2}L_{N_s}^{(N)}u^{n+1}+\left(K_{N_s}^{(N)}+Q_{N_s}^{(N)}\right)u^n.$$

It can be solved by the linear system

$$\left[I_{(N_s)^N} - \frac{\Delta t}{2} L_{N_s}^{(N)}\right] u^{n+1} = \left[I_{(N_s)^N} + (\Delta t) \left(\mathcal{K}_{N_s}^{(N)} + Q_{N_s}^{(N)}\right)\right] u^n, \tag{6}$$

where $L_{N_{s}}^{\left(N\right)}$ and $K_{N_{s}}^{\left(N\right)}$ are defined in (4) and (5), respectively, and

$$Q_{N_s}^{(N)} = \text{diag}\left(-\nabla \cdot f(s_j) + \frac{1}{2} \|h(s_j)\|^2\right)_{j=1}^{(N_s)^N}$$

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Discrete Sine Transform (DST)

The spectral decomposition of the matrix $\left[I_{(N_s)^N} - \frac{\Delta t}{2}L_{N_s}^{(N)}\right]$ in the linear system (6) is

$$\left[I_{(N_s)^N}-\frac{\Delta t}{2}L_{N_s}^{(N)}\right]=W_{N_s}^{(N)}\Lambda_{N_s}\left(W_{N_s}^{(N)}\right)^*,$$

where $W_{N_s}^{(N)} = \bigotimes_{d=1}^{N} W_{N_s}$ and $\Lambda_{N_s}^{(N)} = \sum_{d=1}^{N} \left(I_{(N_s)^{N-d}} \otimes \Lambda_{N_s} \otimes I_{(N_s)^{d-1}} \right)$ in which

$$W_{N_s} = \left[\sqrt{\frac{2}{N_s + 1}} \sin\left(\frac{ij\pi}{N_s + 1}\right) \right]_{i,j=1}^{N_s}$$

and

$$\Lambda_{N_s} = \operatorname{diag}\left(1 - \frac{2\Delta t}{(\Delta s)^2}\sin^2\left(\frac{i\pi}{2(N_s+1)}\right)\right)_{i=1}^{N_s}$$

The complexity of the product of $W_{N_s}^{(N)}$ is $O((N_s)^N \log N_s)$.

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

DST for Solving the Linear System

Recall the spectral decomposition of the matrix

$$\left[I_{(N_s)^N}-\frac{\Delta t}{2}L_{N_s}^{(N)}\right]=W_{N_s}^{(N)}\Lambda_{N_s}\left(W_{N_s}^{(N)}\right)^*.$$

The matrix inverse

$$\left[I_{(N_s)^N} - \frac{\Delta t}{2} L_{N_s}^{(N)}\right]^{-1} = W_{N_s}^{(N)} \Lambda_{N_s}^{-1} \left(W_{N_s}^{(N)}\right)^*.$$

The matrix-vector product of W^(N)_{Ns} costs O((N_s)^N log N_s).
 The product of diagonal matrix Λ⁻¹_{Ns} costs O((N_s)^N).
 The complexity for solving the linear system [I_{(Ns)^N} - Δt/2 L^(N)_{Ns}] u = b is O((N_s)^N log N_s).

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

High-Order Scheme of Discrete Laplacian

To reduce the number of grid point N_s , we apply the high-order difference scheme for the Laplacian operator \triangle , defined by

$$\overline{L}_{N_{s}}^{(N)}u(s) = \frac{1}{(\Delta s)^{2}} \sum_{\substack{j=0\\|\mathbf{k}| = \sqrt{j}\Delta s\\\mathbf{k} \in \mathcal{Q}_{s}}}^{N} \alpha_{j}u(s+\mathbf{k}),$$
(7)

where $s, k \in \mathbb{R}^N$, \mathcal{Q}_s is the cube with the center at s and the side length $2\Delta s$, the coefficients $\alpha_j = 2^{2-N-j}, j = 1, ..., N$, and

$$\alpha_{0} = -\sum_{j=1}^{D} \left(\alpha_{j} \# \left\{ \mathbf{k} \in \mathcal{Q}_{\mathbf{s}} \left| |\mathbf{k}| = \sqrt{j} \Delta \mathbf{s} \right\} \right).$$

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Construction of High-Order Discrete Laplacian Matrix

The matrix $\overline{L}_{N_s}^{(N)} := S_{N_s}^{(1,...,N)}$ can be recursively defined by

$$S_{N_s}^{(j,...,k)} = I_{N_s} \otimes S_{N_s}^{(j,...,k-1)} + J_{N_s} \otimes S_{N_s}^{(i+1,...,k)},$$
(8)

for k = j + 1, ..., N, in which the matrices J_{N_s} and $S_{N_s}^{(j)}$ are defined by

$$J_{N_s} = \begin{bmatrix} 0 & 1 & & \\ 1 & 0 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 0 \end{bmatrix}_{N_s \times N_s} \text{and } S_{N_s}^{(j)} = \begin{bmatrix} \alpha_{j-1} & \alpha_j & & \\ \alpha_j & \alpha_{j-1} & \ddots & \\ & \ddots & \ddots & \alpha_j \\ & & & \alpha_j & \alpha_{j-1} \end{bmatrix}_{N_s \times N_s}$$

respectively, $j = 1, \ldots, N$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● ○ ♀ ○ 27/38

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Diagram for the Recursive Construction

Figure: Diagram for the recursive construction of $\overline{L}_{N_s}^{(N)} := S_{N_s}^{(1,...,N)}$.

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Explicit Form of High-Order Laplacian

The diagram immediately leads to an explicit form of the matrix

$$\overline{L}_{N_{s}}^{(N)} = \sum_{d=1}^{N} \left[\sum_{\substack{\#\{i \mid X_{j} = I_{N_{s}}\} = N-d \\ \#\{i \mid X_{j} = J_{N_{s}}\} = d-1}} \left(\bigotimes_{X_{j} \in \{I_{N_{s}}, J_{N_{s}}\}}^{N-1} X_{i} \right) \otimes S_{N_{s}}^{(d)} \right],$$

in which I_{N_s} denotes the identity matrix of size $N_s \times N_s$,

$$\mathsf{J}_{N_{s}} = \begin{bmatrix} 0 & 1 & & \\ 1 & 0 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & 0 \end{bmatrix}_{N_{s} \times N_{s}} \text{ and } \mathsf{S}_{N_{s}}^{(j)} = \begin{bmatrix} \alpha_{j-1} & \alpha_{j} & & \\ \alpha_{j} & \alpha_{j-1} & \ddots & \\ & \ddots & \ddots & \alpha_{j} \\ & & & \alpha_{j} & \alpha_{j-1} \end{bmatrix}_{N_{s} \times N_{s}},$$

 $j=1,\ldots,N.$

イロト イ理ト イヨト イヨト

2

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

DST of High-Order Laplacian

The spectral decomposition of $\overline{L}_{N_s}^{(N)}$ is

$$\overline{L}_{N_s}^{(N)} = W_{N_s}^{(N)} \overline{\Lambda}_{N_s}^{(N)} \left(W_{N_s}^{(N)} \right)^*,$$

where $\mathbf{W}_{N_s}^{(N)} = \left(\bigotimes_{d=1}^N W_{N_s}\right)$ and $\overline{\Lambda}_{N_s}^{(N)}$ is the diagonal matrix of the form

$$\overline{\Lambda}_{N_s}^{(N)} = \sum_{d=1}^{N} \left[\sum_{\substack{\#\{i | X_i = I_{N_s}\} = N-d \\ \#\{i | X_i = \Gamma_{N_s}\} = d-1}} \left(\bigotimes_{\substack{i=1 \\ X_i \in \{I_{N_s}, \Gamma_{N_s}\}}}^{N-1} X_i \right) \otimes \Theta_{N_s}^{(d)} \right],$$

where $\Theta_{N_s}^{(d)} = \alpha_d \Lambda_{N_s} + (2\alpha_d + \alpha_{d-1}) I_{N_s}$, $d = 1, \dots, N$, and $\Gamma_{N_s} = \Lambda_{N_s} + 2 I_{N_s}$, in which

$$\Lambda_{N_s} = \operatorname{diag}\left(1 - \frac{2\Delta t}{(\Delta s)^2}\sin^2\left(\frac{i\pi}{2(N_s+1)}\right)\right)_{i=1}^{N_s}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで、

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Nonnegativity of the Linear Systems

Theorem (Yueh, Lin, and Yau⁵)

Both the matrices
$$\left[I_{N_s^N} - \frac{\Delta t}{2}L_{N_s}^{(N)}\right]^{-1}$$
 and $\left[I_{N_s^N} - \frac{\Delta t}{2}\overline{L}_{N_s}^{(N)}\right]^{-1}$ are nonnegative operators.

Remark

The nonnegativity of the solution to the linear systems

$$\left[I_{N_{s}^{N}}-\frac{\Delta t}{2}L_{N_{s}}^{(N)}\right]u=b \quad \text{and} \quad \left[I_{N_{s}^{N}}-\frac{\Delta t}{2}\overline{L}_{N_{s}}^{(N)}\right]u=b$$

are important, since the solution u(t, s) represents the unnormalized probability density function of the state at time t.

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Numerical Experiments

To simulate the filtering model (1), we generate a set of signals and observations $\{x_k, y_k\}_{k=0}^{N_{\tau}}$ using the explicit Euler method

$$\begin{cases} x_{k+1} = x_k + f(x_k)\Delta\tau + v\sqrt{\Delta\tau}, \\ y_{k+1} = y_k + h(x_k)\Delta\tau + w\sqrt{\Delta\tau} \end{cases}$$

where

- $x_0, y_0 = 0$: a given initial state / observation.
- $f : \mathbb{R}^N \to \mathbb{R}^N$: a given drift function.
- $h: \mathbb{R}^N \to \mathbb{R}^M$: a given observation function.
- $\Delta \tau = 0.005$: the time step size.
- v, w: independent Brownian motions with mean 0 and variance 1.

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Numerical Experiments

Algorithm 1 Yau-Yau Method for Nonlinear Filtering

Input: Partitions of time
$$\{t_n\}_{n=1}^{N_t}$$
 and space $\{s_j\}_{j=1}^{(N_s)^N}$,
functions f , h , and observations $\{y_k\}_{k=1}^{N_t}$.
Output: The estimate of the state x_n , $n = 1 ..., N_t$.
1: for $n = 1 ..., N_t$ do
2: if A new measurement $y(\tau_k)$ is observed, i.e. $t_n = \tau_k$ for some k . then
3: $u_j^n \leftarrow u_j^n \exp\left\{(y(\tau_k) - y(\tau_{k-1}))^\top h(s_j)\right\}, j = 1, ..., (N_s)^N$.
4: end if
5: $b = \left[l_{(N_s)^N} + (\Delta t) \left(K_{N_s}^{(N)} + Q_{N_s}^{(N)}\right)\right] u^{n-1}$.
6: $u^n = W_{N_s}^{(N)} \left(\Lambda_{N_s}^{-1} \left(\left(W_{N_s}^{(N)}\right)^* b\right)\right)$.
7: Normalize $u^n \leftarrow \frac{u^n}{\sum_j u_j^n}$.
8: The estimate of the state $x_n \approx \sum_{j=1}^{(N_s)^N} u_j^n s_j$.

< = > < = > < = > < = >

3

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Numerical Result of a 3-D Filtering Problem

The following is a numerical result of the filtering model (1) in which

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Numerical Result of a 4-D Filtering Problem

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Numerical Result of a 5-D Filtering Problem

Algorithm for the Filtering Model Finite Difference Schemes Numerical Experiments

Numerical Result of a 6-D Cubic Filtering Problem

Summary

We have briefly introduced the history of the Yau-Yau method for the *N*-dimensional nonlinear filtering problem and the numerical algorithm using the QIEM. The advantages of the QIEM are

- The linear system of the QIEM is probability density preserving, i.e. the solution of the linear system is always nonnegative.
- The solver for QIEM is efficient with complexity $O((N_s)^N \log N_s)$.
- The convergence of the QIEM is guaranteed.
- Numerical results show the accuracy of the algorithm.

<ロ>

2

Summary

We have briefly introduced the history of the Yau-Yau method for the *N*-dimensional nonlinear filtering problem and the numerical algorithm using the QIEM. The advantages of the QIEM are

- The linear system of the QIEM is probability density preserving, i.e. the solution of the linear system is always nonnegative.
- The solver for QIEM is efficient with complexity $O((N_s)^N \log N_s)$.
- The convergence of the QIEM is guaranteed.
- Numerical results show the accuracy of the algorithm.

Thank you for your attention.

<ロ>

2