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Nonlinear Filtering Problems

In 1961, Kalman and Bucy first established the
finite-dimensional filter for the linear filtering model with
Gaussian initial distribution, which is highly influential in
modern industry.
Since then filtering theory has proved useful in science and
engineering, for example, the navigational and guidance
systems, radar tracking, sonar ranging, and satellite and
airplane orbit determination.
Despite its usefulness, however, the Kalman–Bucy filter is
not perfect.

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems



4/38

Introduction
Numerical Method

Nonlinear Filtering Problems
Duncan–Mortensen–Zakai Equation
The Kolmogorov Equation

Nonlinear Filtering Problems

Its main weakness is that it is restricted to the linear
dynamical system with Gaussian initial distribution.
Therefore there has been tremendous interest in solving
the nonlinear filtering problem which involves the
estimation of a stochastic process

x = {xt} (called the signal or state process)

that cannot be observed directly.
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Information containing x is obtained from observations of a
related process

y = {yt} (the observation process).

The goal of nonlinear filtering is to determine

the conditional density ρ(t , x) of xt

given the observation history of {ys : 0 ≤ s ≤ t}.
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In the late 1960s, Duncan, Mortensen, and Zakai
independently derived the Duncan–Mortensen–Zakai
(DMZ) equation for the nonlinear filtering theory, which the
conditional probability density ρ(t , x) has to satisfy.
The central problem of nonlinear filtering theory is to solve
the DMZ equation in real-time and in a memoryless way.
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In 2000, we proposed a novel algorithm to do just that1.
Under the assumptions that the drift terms fi(x), 1 ≤ i ≤ n,
and their first and second derivatives, and the observation
terms hi(x), 1 ≤ i ≤ m, and their first derivatives, have
linear growth, we showed that the solution obtained from
our algorithms converges to the true solution of the DMZ
equation.

1
S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory I. Mathematical

Research Letters, 7:671–693, 2000.
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Although the above approach is quite successful, so far it
cannot handle the famous cubic sensor in engineering in
which

f (x) = 0 and h(x) = x3.

It is well known that there is no finite-dimensional filter for
the cubic sensor.
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We later showed that under some mild conditions (which
essentially say that the growth of |h| is greater than the
growth of |f |), the DMZ equation admits a unique
nonnegative solution

u ∈W 1,1
0 ((0,T )× Rn)

which can be approximated by solutions uR of the DMZ
equation on the ball BR with uR|∂BR = 0.
The rate of convergence can be efficiently estimated in the
L1 norm.
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The solution uR can in turn be approximated efficiently by
an algorithm depending only on solving the
time-independent Kolmogorov equation on BR.
Our algorithm can solve practically all engineering
problems, including the cubic sensor problem in real-time
and in a memoryless fashion.
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Specifically we show that the solution obtained from our
algorithms converges to the solution of the DMZ equation
in the L1 sense.
Equally important, we have a precise error estimate of this
convergence, which is important in numerical computation.
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Signal–Observation Model

The (nonlinear) filtering problem considered here is{
dx(t) = f (x(t)) dt + dv(t), x(0) = x0,

dy(t) = h(x(t)) dt + dw(t), y(0) = 0
(1)

where
x(t) ∈ RN : state.
y(t) ∈ RM : measurement.
f : RN → RN : (nonlinear) drift term.
h : RN → RM : (nonlinear) observation term.
v(t) ∈ RN , w(t) ∈ RM : independent Brownian motions.
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Signal–Observation Model

x(t) : signal / state

y(t) : observation / measurement

Goal
Estimate the state x(t) by a given history of observations

{y(τ) | τ ∈ [0, t ]}, for t ∈ (0,T ].
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Duncan–Mortensen–Zakai (DMZ) Equation (1960s)

Let σ(t , x) be an unnormalized conditional probability density of
x(t) given {y(τ)|τ ∈ [0, t ]}. The DMZ equation is given by

dσ(t , x) = L0σ(t , x) dt +
n∑

i=1

Liσ(t , x) dyi(t), σ(0, x) = σ0,

where

L0 =
1
2

n∑
i=1

∂2

∂x2
i
−

n∑
i=1

fi
∂

∂xi
−

n∑
i=1

∂fi
∂xi
− 1

2

m∑
i=1

h2
i ,

and for i = 1, . . . ,m, Li is the zero degree differential operator
of multiplication by hi .
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The Robust DMZ Equation (Davis, 1980s)

Define the new unnormalized density as

u(t , x) = exp

(
−

m∑
i=1

hi(x)yi(t)

)
σ(t , x).

The robust DMZ equation2 is given by

∂u
∂t

(t , x) = L0u(t , x) +
m∑

i=1

yi(t)[L0,Li ]u(t , x)

+
1
2

m∑
i,j=1

yi(t)yj(t)[[L0,Li ],Lj ]u(t , x),

u(0, x) = σ0,

where [·, ·] denotes the Lie bracket.
2

M. H. A. Davis, On a multiplicative functional transformation arising in nonlinear filtering theory, Z. Wahrsch.
Verw. Gebiete, 54:125–139, 1980.
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The Robust DMZ Equation (Yau and Yau, 2000s)

The robust DMZ equation1 is reformulated as

∂u
∂t

(t , x) =
1
2
4u(t , x) + (−f (x) +∇K (t , x)) · ∇u(t , x)

+

(
−∇ · f (x)− 1

2
|h(x)|2 +

1
2
4K (t , x)

−f (x) · ∇K (t , x) +
1
2
|∇K (t , x)|2

)
u(t , x),

u(0, x) = σ0(x),

(2)

where K =
∑m

i=1 yi(t)hi(x), f = (f1, . . . , fn)>, h = (h1, . . . ,hm)>.

1
S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory I. Mathematical

Research Letters, 7:671–693, 2000.
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Theorem (Yau and Yau3)
Consider the filtering model (1). For any T > 0, let u be a
solution of the robust DMZ equation (2) in [0,T ]× RN . Assume

− 1
2
|h|2 − 1

2
4K − f · ∇K +

1
2
|∇K |2 + |f −∇K | ≤ c1. (3)

Let R ≥ 1 and uR be the solution of the following DMZ
equation on the ball BR:

sup
0≤t≤T

∫
|x|≥R

u(t , x) ≤ e−
√

1+R2
e(c1+ N+1

2 )T
∫
RN

e
√

1+|x|2 u(0, x).

Remark
The above theorem says that we can choose a ball large
enough to capture almost all the density.

3
S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory II. SIAM. J.

Control Optim., 47(1):163–195, 2008.
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The Robust DMZ Equation

Theorem (Yau and Yau3)
Consider the filtering model (1). For any T > 0, let u be a solution of the
robust DMZ equation (2) in [0,T ]× RN . Assume (3) holds and

1 − 1
2 |h|

2 − 1
2 4K − f · ∇K + 1

2 |∇K |2 + 12 + 2N + 4|f −∇K | ≤ c2.

2 e−
√

1+|x|2 (12 + 2N + 4|f −∇K |) ≤ c3.
Let R ≥ 1 and uR be the solution of the robust DMZ equation (2) on the ball
BR with the boundary condition uR(t , x) = 0 for (t , x) ∈ [0,T ]× ∂BR . Then∣∣∣∣∣∣
∫

B R
2

u(T , x)− uR(T , x)

∣∣∣∣∣∣ ≤ 2(ec2T − 1)

c2
c3e−

9
16 Re(c1+ N+1

2 )T
∫
RN

e
√

1+|x|2 u(0, x).

Remark
The above theorem says that we can approximate u by uR.

3
S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory II. SIAM. J.

Control Optim., 47(1):163–195, 2008.
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The Kolmogorov Equation (Yau and Yau, 2008)

The density u(τk , x) can be computed by ũk (τk , x), where
ũk (t , x)|[τk−1,τk ] satisfies the Kolmogorov equation3



∂ũk

∂t
(t , x) =

1
2
4ũk − f (x) · ∇ũk −

(
∇ · f +

1
2
|h|2
)

ũk , t ∈ [τk−1, τk ],

ũk (τk−1, x) = exp {(y(τk−1)− y(τk−2)) · h(x)} ũk−1(τk−1, x),

ũ1(0, x) = σ0(x) exp {y(0) · h(x)} , k = 2, . . . ,Nτ .

Then,

u(τk , x) = exp

− m∑
j=1

yj (τk−1)hj (x)

 ũk (τk , x).

3
S.-T. Yau and S. S.-T. Yau. Real time solution of nonlinear filtering problem without memory II. SIAM. J.

Control Optim., 47(1):163–195, 2008.
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Algorithm of Yau-Yau Method for the Filtering Model

Recall the N-dimensional filtering model (1):{
dx(t) = f (x(t)) dt + dv(t), x(0) = x0,

dy(t) = h(x(t)) dt + dw(t), y(0) = 0.
1 A bounded domain Ω is given by an N-cell, e.g., [−10, 10]N .
2 An initial density u(0, s) is given by, e.g., N (x0, 0.2).
3 Set τ0 = 0. Once a new measurement y(τk ) is observed, we update

u(τk , sj )← exp
{

[y(τk )− y(τk−1)]> h(sj )
}

u(τk , sj ).

4 For t ∈ [τk , τk+1), we solve the Kolmogorov on {t} × Ω:
∂u
∂t

(t , s) =
1
2
4u(t , s)− f (s) · ∇u(t , s)−

(
∇ · f (s) +

1
2
‖h(s)‖2

2

)
,

u(t , ∂Ω) = 0.

5 The estimate of the state is computed by x(t) ≈
∫

Ω
s du(t , s).
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Finite Difference Schemes

Let {tn}Nt
n=1 and {sj}Ns

j=1 be a uniform partition of [0,T ] and [−R,R]

with step size ∆t and ∆s, respectively. Then
∂u
∂s2 (tn, sj ) =

α

(∆s)2 (u(tn+1, sj+1)− 2u(tn+1, sj ) + u(tn+1, sj−1))

+
1− α
(∆s)2 (u(tn, sj+1)− 2u(tn, sj ) + u(tn, sj−1)) + O((∆s)2),

∂u
∂s

(tn, sj ) =
β

2∆s
(u(tn+1, sj+1)− u(tn+1, sj−1))

+
1− β
2∆s

(u(tn, sj+1)− u(tn, sj−1)) + O(∆s).

1 Explicit Euler Method: α = 0, β = 0.
2 Implicit Euler Method: α = 1, β = 1.
3 Quasi-Implicit Euler Method (QIEM): α = 1, β = 0.
4 Crank-Nicolson Method: α = 1

2 , β = 1
2 .

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems
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Discrete Operators
Let {tn}Nt

n=1 and {sj}Ns
j=1 be a uniform partition of [0,T ] and [−R,R]

with step size ∆t and ∆s, respectively. Then {sj}(Ns)N

j=1 :=
(
{sj}Ns

j=1

)N

is a partition of [−R,R]N . The discretization of 4 and f · ∇u are
defined by

L(N)
Ns

=
N∑

d=1

(
I(Ns)N−d ⊗ LNs ⊗ I(Ns)d−1

)
, (4)

and

K (N)
Ns

=
N∑

d=1

{
diag (fd (sj ))(Ns)N

j=1

(
I(Ns)N−d ⊗ KNs ⊗ I(Ns)d−1

)}
, (5)

respectively, where INs denotes the identity matrix of size Ns × Ns and

LNs =
1

(∆s)2


−2 1
1 −2

. . .
. . .

. . . 1
1 −2


Ns×Ns

and KNs =
1

2(∆s)


0 1
−1 0

. . .
. . .

. . . 1
−1 0


Ns×Ns

.
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QIEM for Kolmogorov Equation (Yueh, Lin, Yau, 2014)
The QIEM for Kolmogorov equation is nonnegativity preserving4.
Denote the vector [u(tn, sj )](Ns)N

j=1 as un. The QIEM for Kolmogorov
equation is formulated as

un+1 − un

∆t
=

1
2

L(N)
Ns

un+1 +
(

K (N)
Ns

+ Q(N)
Ns

)
un.

It can be solved by the linear system[
I(Ns)N −

∆t
2

L(N)
Ns

]
un+1 =

[
I(Ns)N + (∆t)

(
K (N)

Ns
+ Q(N)

Ns

)]
un, (6)

where L(N)
Ns

and K (N)
Ns

are defined in (4) and (5), respectively, and

Q(N)
Ns

= diag
(
−∇ · f (sj ) +

1
2
‖h(sj )‖2

)(Ns)N

j=1
.

4
M.-H. Yueh, W.-W. Lin and S.-T. Yau, An efficient algorithm of Yau-Yau method for solving nonlinear filtering

problems, Commun. Inf. Syst. 14(2): 111–134, 2014.
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Discrete Sine Transform (DST)

The spectral decomposition of the matrix
[
I(Ns)N − ∆t

2 L(N)
Ns

]
in the

linear system (6) is[
I(Ns)N −

∆t
2

L(N)
Ns

]
= W (N)

Ns
ΛNs

(
W (N)

Ns

)∗
,

where W (N)
Ns

=
⊗N

d=1 WNs and Λ
(N)
Ns

=
∑N

d=1

(
I(Ns)N−d ⊗ ΛNs ⊗ I(Ns)d−1

)
in which

WNs =

[√
2

Ns + 1
sin

(
i j π

Ns + 1

)]Ns

i,j=1
and

ΛNs = diag
(

1− 2∆t
(∆s)2 sin2

(
i π

2 (Ns + 1)

))Ns

i=1
.

The complexity of the product of W (N)
Ns

is O((Ns)N log Ns).
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DST for Solving the Linear System
Recall the spectral decomposition of the matrix[

I(Ns)N −
∆t
2

L(N)
Ns

]
= W (N)

Ns
ΛNs

(
W (N)

Ns

)∗
.

The matrix inverse[
I(Ns)N −

∆t
2

L(N)
Ns

]−1

= W (N)
Ns

Λ−1
Ns

(
W (N)

Ns

)∗
.

1 The matrix-vector product of W (N)
Ns

costs O((Ns)N log Ns).

2 The product of diagonal matrix Λ−1
Ns

costs O((Ns)N).

The complexity for solving the linear system
[
I(Ns)N − ∆t

2 L(N)
Ns

]
u = b is

O((Ns)N log Ns).

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems
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High-Order Scheme of Discrete Laplacian

To reduce the number of grid point Ns, we apply the high-order
difference scheme for the Laplacian operator 4, defined by

L
(N)

Ns
u(s) =

1
(∆s)2

N∑
j=0

|k|=
√

j∆s
k∈Qs

αju(s + k), (7)

where s, k ∈ RN , Qs is the cube with the center at s and the side
length 2∆s, the coefficients αj = 22−N−j , j = 1, . . . ,N, and

α0 = −
D∑

j=1

(
αj #

{
k ∈ Qs

∣∣∣|k| =
√

j∆s
})

.

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems
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Construction of High-Order Discrete Laplacian Matrix

The matrix L
(N)

Ns
:= S(1,...,N)

Ns
can be recursively defined by

S(j,...,k)
Ns

= INs ⊗ S(j,...,k−1)
Ns

+ JNs ⊗ S(i+1,...,k)
Ns

, (8)

for k = j + 1, . . . ,N, in which the matrices JNs and S(j)
Ns

are defined by

JNs =


0 1

1 0
. . .

. . . . . . 1
1 0


Ns×Ns

and S(j)
Ns

=


αj−1 αj

αj αj−1
. . .

. . . . . . αj
αj αj−1


Ns×Ns

,

respectively, j = 1, . . . ,N.

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems
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Diagram for the Recursive Construction

S(1)
Ns

INs⊗−→ S(1,2)
Ns

INs⊗−→ · · ·
INs⊗−→ S(1,...,N−1)

Ns

INs⊗−→ S(1,...,N)
Ns

JNs⊗
↗

JNs⊗
↗

JNs⊗
↗

JNs⊗
↗

S(2)
Ns

INs⊗−→ S(2,3)
Ns

INs⊗−→ · · ·
INs⊗−→ S(2,...,N)

Ns
JNs⊗
↗

JNs⊗
↗

JNs⊗
↗

...
...

...
... . .

.

JNs⊗
↗

JNs⊗
↗

S(N−1)
Ns

INs⊗−→ S(N−1,N)
Ns

JNs⊗
↗

S(N)
Ns

Figure: Diagram for the recursive construction of L
(N)

Ns
:= S(1,...,N)

Ns
.
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Explicit Form of High-Order Laplacian

The diagram immediately leads to an explicit form of the matrix

L
(N)
Ns =

N∑
d=1

 ∑
#{i|Xi =INs}=N−d
#{i|Xi =JNs}=d−1

 N−1⊗
i=1

Xi∈{INs ,JNs}

Xi

⊗ S(d)
Ns

 ,
in which INs denotes the identity matrix of size Ns × Ns,

JNs =


0 1

1 0
. . .

. . .
. . . 1
1 0


Ns×Ns

and S(j)
Ns

=


αj−1 αj

αj αj−1
. . .

. . .
. . . αj

αj αj−1


Ns×Ns

,

j = 1, . . . ,N.

Shing-Tung Yau The Yau-Yau Method for Nonlinear Filtering Problems
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DST of High-Order Laplacian

The spectral decomposition of L
(N)
Ns is

L
(N)
Ns = W (N)

Ns
Λ

(N)
Ns

(
W (N)

Ns

)∗
,

where W(N)
Ns

=
(⊗N

d=1 WNs

)
and Λ

(N)
Ns is the diagonal matrix of the form

Λ
(N)
Ns =

N∑
d=1

 ∑
#{i|Xi =INs}=N−d
#{i|Xi =ΓNs}=d−1

 N−1⊗
i=1

Xi∈{INs ,ΓNs}

Xi

⊗Θ
(d)
Ns

 ,
where Θ

(d)
Ns

= αd ΛNs + (2αd + αd−1) INs , d = 1, . . . ,N, and ΓNs = ΛNs + 2 INs ,
in which

ΛNs = diag
(

1− 2∆t
(∆s)2 sin2

(
iπ

2 (Ns + 1)

))Ns

i=1
.
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Nonnegativity of the Linear Systems

Theorem (Yueh, Lin, and Yau5)

Both the matrices
[
INN

s
− ∆t

2 L(N)
Ns

]−1
and

[
INN

s
− ∆t

2 L
(N)

Ns

]−1
are

nonnegative operators.

Remark
The nonnegativity of the solution to the linear systems[

INN
s
− ∆t

2
L(N)

Ns

]
u = b and

[
INN

s
− ∆t

2
L

(N)

Ns

]
u = b

are important, since the solution u(t , s) represents the unnormalized
probability density function of the state at time t .

5
M.-H. Yueh, W.-W. Lin and S.-T. Yau, An efficient numerical method for solving high-dimensional nonlinear

filtering problems, Commun. Inf. Syst. 14(4), pp. 243-262, 2014.
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Numerical Experiments

To simulate the filtering model (1), we generate a set of signals
and observations {xk , yk}Nτk=0 using the explicit Euler method{

xk+1 = xk + f (xk )∆τ + v
√

∆τ ,

yk+1 = yk + h(xk )∆τ + w
√

∆τ ,

where
x0, y0 = 0: a given initial state / observation.
f : RN → RN : a given drift function.
h : RN → RM : a given observation function.
∆τ = 0.005: the time step size.
v , w : independent Brownian motions with mean 0 and
variance 1.
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Numerical Experiments

Algorithm 1 Yau-Yau Method for Nonlinear Filtering

Input: Partitions of time {tn}Nt
n=1 and space {sj}(Ns)N

j=1 ,
functions f , h, and observations {yk}Nτ

k=1.
Output: The estimate of the state xn, n = 1 . . . ,Nt .

1: for n = 1 . . . ,Nt do
2: if A new measurement y(τk ) is observed, i.e. tn = τk for some k . then
3: un

j ← un
j exp

{
(y(τk )− y(τk−1))> h(sj )

}
, j = 1, . . . , (Ns)N .

4: end if
5: b =

[
I(Ns)N + (∆t)

(
K (N)

Ns
+ Q(N)

Ns

)]
un−1.

6: un = W (N)
Ns

(
Λ−1

Ns

((
W (N)

Ns

)∗
b
))

.

7: Normalize un ← un∑
j un

j
.

8: The estimate of the state xn ≈
∑(Ns)N

j=1 un
j sj .

9: end for
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Numerical Result of a 3-D Filtering Problem
The following is a numerical result of the filtering model (1) in which

f (x) = (cos(xi ))3
i=1 and h(x) = (x3

2 − x2
1 , x

3
3 − x2

2 , x
3
1 − x2

3 ).
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Numerical Result of a 4-D Filtering Problem

f (x) = (cos(xi ))4
i=1,

h(x) = (x1x2
2 − sin(x2

1 ), x2x2
3 − sin(x2

2 ), x3x2
4 − sin(x2

3 ), x4x2
1 − sin(x2

4 )).
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Numerical Result of a 5-D Filtering Problem

f (x) = (cos(xi ))5
i=1,

h(x) = (x5x2
2 − x1, x1x2

3 − x2, x2x2
4 − x3, x3x2

5 − x4, x4x2
1 − x5).
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Numerical Result of a 6-D Cubic Filtering Problem

f (x) = (cos(xi ))6
i=1,

h(x) = (x6x1x2, x1x2x3, x2x3x4, x3x4x5, x4x5x6, x5x6x1).
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Summary

We have briefly introduced the history of the Yau-Yau method for the
N-dimensional nonlinear filtering problem and the numerical
algorithm using the QIEM. The advantages of the QIEM are

The linear system of the QIEM is probability density preserving,
i.e. the solution of the linear system is always nonnegative.

The solver for QIEM is efficient with complexity O((Ns)N log Ns).

The convergence of the QIEM is guaranteed.

Numerical results show the accuracy of the algorithm.

Thank you for your attention.
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