Can a neural network learn planar topology?

Jean-Michel Morel
Ecole Normale Supérieure Paris-Saclay, France
Joint work with Adrien Courtois and Pablo Arias

Conference at CUHK MATH-IMS Applied Maths series, April 16, 2021

In this talk we address the simplest instance of the figure-ground problem, raised in 1921
by the cognitive psychologist Edgar Rubin. The problem is to understand how human
perception segments an image into foreground figures and their background.

The simplest instance of the figure-ground problem is the closure problem. For
psychologists, the interior of a Jordan curve is perceived as a figure, and its exterior as its
background.

For mathematicians, this is just the Jordan curve theorem. It is easily solved numerically:
There is an elementary algorithm tagging the interior points of any rasterized Jordan
curve in a digital image.

This problem is therefore a good playground to evaluate how far we stand in artificial
intelligence.

We shall evaluate the performance of neural networks on this problem and attempt to
explain it based on recent mathematical observations on the learning power of neural
networks.

Plan:
lllustration first : learning the Jordan curve theorem by CNN

Analysis of a theorem by Pedro Domingos (*)

Various reformulations, consequences, discussion

(*) DOMINGOS, Pedro. Every Model Learned by Gradient Descent Is
Approximately a Kernel Machine. arXiv preprint arXiv:2012.00152, 2020.

References
On perception theory
Rubin, Edgar. Figure and ground. Readings in perception, 1958.

On shapes and implementation of perception theory
Courtois, Adrien, JMM, Arias, Pablo (2021)

Non-local layers reducing network depth for global analysis, submitted.

Alvarez, L., Monzoén, N., & Morel, J. M. (2018). Interactive design of random aesthetic
abstract textures by composition principles. Leonardo, 1-11, MIT Press

On structure of learning, and the neural tangent kernel

Minsky, M., & Papert, S. A. (1969). Perceptrons: An introduction to computational
geometry. MIT press, 2017 reedition.

Domingos, Pedro (2020). Every Model Learned by Gradient Descent Is Approximately
a Kernel Machine. arXiv preprint arXiv:2012.00152.

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. Adv. Neural Inf. Proc. Sys., 31:8571{8580, 2018.

Charpiat, G., Girard, N., Felardos, L., & Tarabalka, Y. (2019, December). Input
Similarity from the Neural Network Perspective. In NeurlPS 2019-33th Annual
Conference on Neural Information Processing Systems.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., & Wang, R. (2019). On exact
computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955.

Plan:
lllustration first : learning the Jordan curve theorem by CNN

Analysis of a theorem by Pedro Domingos (*)

Various reformulations, consequences, discussion

(*) DOMINGOS, Pedro. Every Model Learned by Gradient Descent Is
Approximately a Kernel Machine. arXiv preprint arXiv:2012.00152, 2020.

A vase or two human profiles? The figure ground dilemma by Edgar Rubin (1921)

Distinguishing frontal objects from their background is a fundamental problem of perception

RUBIN, Edgar. Figure and ground. Readings in perception, 1958.

MLA
Fig: https://en.wikipedia.org/wiki/Edgar_Rubin#/media/File:Rubin2.jpg

https://en.wikipedia.org/wiki/Edgar_Rubin#/media/File:Rubin2.jpg

background

/ T_]
/ A\
) shape
shape shape
S~ ////// - ______J
background

The closure law
There is a perceptual tendency to close a curve and to perceive its interior as an object, its
exterior as background. This one geometric formulation of the figure/background dilemma.

Wertheimer, Max. "Untersuchungen zur Lehre von der Gestalt. II." Psychologische
forschung 4.1 (1923): 301-350.

lllustration of the Jordan curve theorem. A Jordan curve (drawn in black) divides the
plane into an "inside" region (light blue) and an "outside" region (pink). This is the
simplest version of the perception law of closure. The inside region is the “figure”.
The outside region the “background”

Jordan, Camille (1887), Cours d'analyse

Fig: https://en.wikipedia.org/wiki/Jordan_curve_theorem

https://en.wikipedia.org/wiki/Camille_Jordan
http://www.maths.ed.ac.uk/~aar/jordan/jordan.pdf
https://en.wikipedia.org/wiki/Jordan_curve_theorem

Given the boundary of a shape, the network has to reconstruct the shape
i.e classify each pixel of the image as belonging to the shape or not

1,115 training images, data augmentation by random affine
distortions, 140 test images, images of size 128x128

Particularity: it can be solved with 2 lines of code!
(Compute the parity of the number of crossings on a horizontal half-line starting from each pixel)
A lightweight CNN programmed ad hoc can do this task provided the receptive field is large enough,
but then the question is: can this simple algorithm be learnt from examples? X

Minsky, M., & Papert, S. A. (1969). Perceptrons: An introduction to computational geometry. MIT press, 2017 9
reedition.

Can a network learn this very simple operation?

% . ‘ \\\
~ 99.60%
% .
o
=]
2
a
GCLayer
GAPLayer
2 — SAlayer
Residual CNHN
Lambdalayer
80 1 -Met
10 15 20 35 30 35

Depth
GAP: global average pooliing. SA: self-attention, GC: Global Context

It’s an impossible task for CNNs working locally (*):
It requires a network with a significant depth (or non-local layers), or a U-net

(*) Minsky, M., & Papert, S. A. (1969). Perceptrons: An introduction to computational

geometry. MIT press, 2017 reedition. 10

Can a network learn this very simple operation?

Concatenation
3x3 Conv2d = BN + RelLU
MaxFool2d

Bilinear upsampling

A simple candidate network: A U-Net with 6 scales

Trained with Ranger for 150 epochs, binary cross-entropy loss, batch size 32

11

]/

Can a network learn this very simple operation?

Examples of results (left: input, right: output)

]/

The results are fine, even when tested on two or three shapes (the train set contains only one):

But does it mean it learned the best algorithm? 13

Can a network learn this very simple operation?

]/

But does it mean it learned the best algorithm? NO!

Can a network learn this very simple operation?

14

Plan:
Illustration first : learning the Jordan curve theorem by CNN

Analysis of a theorem by Pedro Domingos (*)

Various reformulations, consequences, discussion

(*) DOMINGOQOS, Pedro. Every Model Learned by Gradient Descent Is
Approximately a Kernel Machine. arXiv preprint arXiv:2012.00152, 2020.

15

Every Model Learned by Gradient Descent Is Approximately
a Kernel Machine

Pedro Domingos PEDROD@CS.WASHINGTON.EDU
Paul G. Allen School of Computer Science & Engineering

University of Washington

Seattle, WA 98195-2350, USA

Abstract

Deep learning’s successes are often attributed to its ability to automatically discover new
representations of the data, rather than relying on handerafted features like other learning
methods. We show, however, that deep networks learned by the standard gradient de-
scent algorithm are in fact mathematically approximately equivalent to kernel machines, a
learning method that simply memorizes the data and uses it directly for prediction via a
similarity function (the kernel). This greatly enhances the interpretability of deep network
weights, by elucidating that they are effectively a superposition of the training examples.
The network architecture incorporates knowledge of the target function into the kernel.
This improved understanding should lead to better learning algorithms.

16

Classic example of kernel:

A kernel machine is a model of the form K(x,z;) = o~ llz—zil|?
y=g(Y aiK(z,z;)+b]|,
i

where x is the query data point, the sum is over training data points x;, g is an optional
nonlinearity, the a;’s and b are learned parameters, and the kernel K" measures the similarity
of its arguments (Scholkopf and Smola, 2002). In supervised learning, a; is typically a linear
function of y, the known output for x;. Kernels may be predefined or learned (Cortes
et al., 2009). Kernel machines, also known as support vector machines, are one of the
most developed and widely used machine learning methods. In the last decade, however,
they have been eclipsed by deep networks, also known as neural networks and multilayer
perceptrons, which are composed of multiple layers of nonlinear functions. Kernel machines
can be viewed as neural networks with one hidden layer, with the kernel as the nonlinearity.

Scholkopf, B., Smola, A. J., & Bach, F. (2002). Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press.

17

Whether a representable function is actually learned, however, depends on the learning
algorithm. Most deep networks, and indeed most machine learning models, are trained
using variants of gradient descent (Rumelhart et al., 1986). Given an initial parameter
vector wy and a loss function L =) . L(y/, y;), gradient descent repeatedly modifies the
model’s parameters w by subtracting the loss’s gradient from them, scaled by the learning
rate e:

Wey1 = W — €V L(wy).

The process terminates when the gradient is zero and the loss is therefore at an optimum
(or saddle point). Remarkably, we have found that learning by gradient descent is a strong
enough constraint that the end result is guaranteed to be approximately a kernel machine,
regardless of the number of layers or other architectural features of the model.

18

Specifically, the kernel machines that result from gradient descent use what we term a
path kernel. If we take the learning rate to be infinitesimally small, the path kernel between
two data points is simply the integral of the dot product of the model’s gradients at the
two points over the path taken by the parameters during gradient descent:

t
I{f(:r': 33!) — / v-w.fw(t) (:1‘-) . vﬂ.r.ﬁu.r(t) (Q’;!)
0

where ¢(t) fis the path. Intuitively, the path kernel measures how similarly the model at the
two data points varies during learning. The more similar the variation for = and z’, the
higher the weight of 2’ in predicting y. Fig. 1 illustrates this graphically.

19

How the path kernel measures similarity between examples. In this two-
dimensional illustration, as the weights follow a path on the plane during training,
the model’s gradients (vectors on the weight plane) for =, z; and xy vary along
it. The kernel K (x,x;) is the integral of the dot product of the gradients V,,y(z)
and V,y(xq) over the path, and similarly for K (z,z5). Because on average over
the weight path V,y(x)-Vyy(z1) is greater than V,y(x) - Vywy(z2), y1 has more
influence than 7o in predicting ¥, all else being equal. -

Definition 1 The tangent kernel of a learning function

fulr) is Kpp(a,2") = Vi fulr) - Vi ful(z').

Definition 2 The path kernel associated with a learning
function f,,(x) and a learning path w(s)secp.q 15

i
I{f,w(;?’,', :1"!) — / V-wfw(s)(m) ’ Vi;}.}(lfw(s)(-r!)ds-
0

21

Notation

Learning data: the samples (x;,y))

Parameters of the learning device: w = (w;)=1...4

Parametric machine learning device y = f(w, x), vy, = f(w,x;)
Loss function : L(w) = > . L(y;.y;) = >_. L(f(w.x;),y})

For example: L(y;,y}) = (flw, x;) — yr)?

Gradient descent: w(s +¢€) = w(s) — eV, L(w(s)), d-lzgt) = —V.,L(w(t))

Learning path: w = (t(s))sefos: 9:(s) = F(s).)
“Slave learning path” of input x: y(s) = f(w(s),z), s € [0,]
Tangent kernel K¢, (x,2") =V, f(w,z) -V, f(w,2’)

Path kernel K¢ (x,2") = fo Vuwflw(s),z) Vi flw(s), z")ds

22

Theorem 1 Consider a differentiable learning machine model y = f(w,x). Let
w be the parameter learned from a training set (x;,y;)i—1...m by gradient descent

of a loss function L(w) =Y. L(y;, f(w,x;)). Then

m

g = iflam,) = Z a; K¢w(z,z;) + b,

=1

where K¢ is the path kernel associated with f(w,x) and the learning path w
taken during gradient descent, a; is the average g—UL along the path weighted by
the corresponding tangent kernel, and b = y(0) is the initial model.

Definition 1 The tangent kernel of a learning function f,,(x) is

Kiw(z,a") =V flw,x) -V, flw,2").

Definition 2 The path kernel associated with a learning function f,,(x) and a
learning path w = w(s)sejo.4) 15

Kiw(x,2') = /(; Vflw(s),z) Vi flw(s),z)ds.

23

Proof a bit rewritten

Proof When its step tends to 0, the gradient descent method becomes

dw(t)
dt

Let y(t) = f(w(t), x) be the “slave learning path”. We have by the chain rule,

= —V.,L(w(t)). (1)

Y _ D 0{ (w(t). x) dlgt(t)

where w(t) = (w;(t));j=1.... 4. Using (1), this yields

d
dy of OL
— = w(t),)| — :
At ; a}_a;j (li () F) (8’1{33') ’
But L(w) = >, L(yi,y;) = >_. L(f(w,x;),y]), and using again the chain rule,
dy _ %, f _ Z OL Of (w,x;)
dt i a*u.:j dy; Ow; '

24

But L(w) =), L(yi.yy) = >, L(f(w,z;),y’), and using again the chain rule,

dy O f "N OL Of (w, x;)
— t),: — : :
dt du g, W) 2) (Z dy; Ow;

Rearranging terms:

dy Of(w,x) Of (w, ;)
dt Zduaz du ow;

j_

Let L'(yr,yi) = a;[, Then using the definition of the tangent kernel

0 Of (w, '
Kp(.2') = Voo f o) - Vo (wa?) = 30 P02 OTE02),
7 ']

Jj=1

T

dy
i ZL’ Ui Yi () K (o) (2, 24).

If (w,x) Of (w. 2
ow ow;

Kypo(e.a') = Vo f(w,2) -V flwa’) = Y
j=1

T

dy !
a ZL y; y.@, Af’u I‘}(‘E ‘B?)

Integrating between 0 and ¢ a.nd recording that v;(t) = f(w(t).x;)

{m
y /ZL yz yz)hfu((l: an)dq

Multiplying and dividing by f) Ky op(s)(x,25)ds, we get

m ft L’(y:ya)K (s (l: il?.i)ds 1 i
y(t) — y(o) o Z - - fuls) / Rf,-w(s)(:rr:ri)dsr
’ fo K¢ owisy (2, 2;)ds

m

= Flam) = Z aiKrw(zx,x;)+ b,

i=1
where K ¢ s the path kernel associated with f(u I:) and the learning path w
taken during gradient descent, a; is the average &= u- along the path weighted by

the corresponding tangent kernel, and b = y(0) is the initial model.

Reformulation of the result

Let L'(yr,y;) = ‘i‘f be the loss derivative for the i-th output. Then

;:_ZL vi)V f(w(t).z) - Vo f(w(t), z;)

dt

4 om
/ Z L' (y5, yi(s)) Vi fw(s),z) - Vi fw(s), x;)ds
0

Z/ (v vi(s))Vuwf(w(s).x) -V flw(s). x;)ds

If for example L(y;,vi) = 5(y; — y:)?. then

Z/ v)V flw(s),x) -V, flw(s),z;)ds

=1

27

Comparison of versions of the main formula

Version 1:

— ft Lr(y:.‘- UE)K (s (I‘ I'i-)ds ! -
y(t) = y(0) =" (o - o el / K (o) (0, 2;)d.
1 f Kooy, x;)ds

ZL’ i) Kpw(2, @)
y(t) = Z a; K pw(z, ;)40

i=1
Version 2:

()= 9(0) = Y- [L7 9V fw(s).2) - o ().)
.1:11 .1
() = 9(0) = 3 [(5) = 1)Vl (w(s).2) - Vo ().)

28

Alvarez, L., Monzén, N., &
M., J. M. (2018).

Interactive design of random
aesthetic abstract textures
by composition principles.
Leonardo, 1-11, MIT Press

Given the boundary of a shape, the network has to reconstruct the shape
i.e classify each pixel of the image as belonging to the shape or not

10,000 training images, data augmentation by random horizontal
and vertical flips, 1,000 test images, images of size 256x256.

29

It performs better now

30

But it’s still not perfect!

Alvarez, L., Monzoén,
N., & M., J. M. (2018).
Interactive design of
random aesthetic
abstract textures by
composition principles.
Leonardo, 1-11, MIT
Press

IOU: 51%

IOU: 85%

31

Plan:
lllustration first : learning the Jordan curve theorem by CNN

Analysis of a theorem by Pedro Domingos (*)

Various reformulations, consequences, discussion

(*) DOMINGOS, Pedro. Every Model Learned by Gradient Descent Is
Approximately a Kernel Machine. arXiv preprint arXiv:2012.00152, 2020.

32

An illustrative figure: a deep network as « a superposition of training examples »

Model

Training example 1

a,

&~

Training example 2

@ L (+) Answer

Query

Deep network weights as superpositions of training examples. Applying the
learned model to a query example is equivalent to simultaneously matching the
query with each stored example using the path kernel and outputting a weighted

sum of the results.
33

Some « deep remark » by the author

Theorem 1 Consider a differentiable learning machine model y = f(w,x). Let

w be the parameter learned from a training set (x;,y?)i=1.. .. by gradient descent

of a loss function L(w) =Y. L(y’, f(w,z;)). Then

m

y= f(w,x)= Z ai K¢ w(x, ;) + 0,

where Ky is the path kernel associated with f (x) and the learning path w
taken during gradient descent, a; is the avemge o, L along the path weighted by

the corresponding tangent kernel, and b = y(0) is the initial model.

t

- Lf(y:y?)K aw(s) (J_’? Jca

y(0) — Z fo 7 fwls) / Ky oy(s) (2, 24)ds,
i=1 fO Kf;w(s)(m:m?)ds

Remark 1 This differs from typical kernel machines in that the a;’s and b depend on x.
Nevertheless, the a;’s play a role similar to the example weights in ordinary SVMs and the

perceptron algorithm.

examples that the loss is more sensitive to during learning have a

higher weight. b is simply the prior model, and the final model is thus the sum of the prior
model and the model learned by gradient descent, with the query point entering the latter
only through kernels. Since Theorem 1 applies to every y; as a query throughout gradient
descent, the training data points also enter the model only through kernels (initial model

aside).

34

Some « deep remarks » by the author

Remark 5 The proof above is for batch gradient descent, which uses all training data points
at each step. To extend it to stochastic gradient descent, which uses a subsample, it suffices
to multiply each term in the summation over data points by an indicator function I;(t) that
is 1 if the ith data point is included in the subsample at time t and 0 otherwise. The only
change this causes in the result is that the path kernel and average loss derivative for a
data point are now stochastic integrals. Based on previous results (Scieur et al., 2017),

Theorem 1 or a similar result seems likely to also apply to further variants of gradient
descent, but proving this remains an open problem.

35

Some « deep remark » by the author

Even when they generalize well, deep networks often appear to memorize and replay whole
training instances (Zhang et al., 2017; Devlin et al., 2015). The fact that deep networks are
in fact kernel machines helps explain both of these observations. It also sheds light on the
surprising brittleness of deep models, whose performance can degrade rapidly as the query
point moves away from the nearest training instance (Szegedy et al., 2014), since this is
what is expected of kernel estimators in high-dimensional spaces (Hardle et al., 2004).

36

Some « deep remark » by the author

Perhaps the most significant implication of our result for deep learning is that it casts
doubt on the common view that it works by automatically discovering new representations of
the data, in contrast with other machine learning methods, which rely on predefined features
(Bengio et al., 2013). As it turns out, deep learning also relies on such features, namely the
oradients of a predefined function, and uses them for prediction via dot products in feature
space, like other kernel machines. All that gradient descent does is select features from this
space for use in the kernel. If gradient descent is limited in its ability to learn representations,
better methods for this purpose are a key research direction. Current nonlinear alternatives
include predicate invention (Muggleton and Buntine, 1988) and latent variable discovery
in graphical models (Elidan et al., 2000). Techniques like structure mapping (Gentner,
1983), crossover (Holland, 1975) and predictive coding (Rao and Ballard, 1999) may also
be relevant. Ultimately, however, we may need entirely new approaches to solve this crucial
but extremely difficult problem.

37

Antecedents, Tangent neural kernel in the “infinitely wide limit”

Lemma 3.1. Consider minimizing the squared loss ((0) by gradient descent with infinitesimally

small learning rate: % = —=VUO(t)). Let u(t) = (f(O(t).®:)),cp,; € R" be the network
outputs on all x;’s at time t, and y = (y;)i, be the desired outputs. Then u(t) follows the

following evolution, where H (t) is an n X n positive semidefinite matrix whose (i, j)-th entry is
0f(0(t),®:i) Of(0(1).x;) \ .
90 90 '

CU = —H (1) (ult) — y) 3)

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., & Wang, R. (2019). On exact computation with an
infinitely wide neural net. arXiv preprint arXiv:1904.11955.

Lemma 3.1. Consider minimizing the squared loss ((0) by gradient descent with infinitesimally
B = —VUO(t). Let u(t) = (f(B(t).2i)),cpy € R" be the network

small learning rate: =
dt

outputs on all x;’s at time t, and y = (-y?-).ie[.n_] be the desired outputs. Then wu(t) follows the
following evolution, where H (t) is an n X n positive semidefinite matrix whose (i, j)-th entry is

<8f(9(t)_.m¢) 8f(9(t)-.wj)>.
20 00 :

= —H(1) - (ult) ~y). G)

The statement of Lemma 3.1 involves a matrix H (¢). Below we define a deep net architecture whose
width 1s allowed to go to infinity, while fixing the training data as above. In the limit, it can be
shown that the matrix H (¢) remains constant during training i.e., equal to H(0). Moreover, under
a random initialization of parameters, the random matrix H (0) converges in probability to a certain
deterministic kernel matrix H™* as the width goes to infinity, which is the Neural Tangent Kernel
ker(-,) (Equation (2)) evaluated on the training data. If H(¢t) = H™* for all ¢, then Equation (3)
becomes

du(t)

dt

Note that the above dynamics is identical to the dynamics of kernel regression under gradient flow,
for which at time ¢ — oo the final prediction function is (assuming u(0) = 0)

(x) = (ker(x, xy), ker(x, x,)) - (H) 'y. (5)

In Theorem 3.2, we rigorously prove that a fully-trained sufficiently wide ReLLU neural network is
equivalent to the kernel regression predictor (5) on any given data point.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., & Wang, R. (2019). On exact computation with an
infinitely wide neural net. arXiv preprint arXiv:1904.11955.

Antecedents, Tangent neural kernel in the “infinitely wide limit”

Theorem 1. For a network of depth L at initialization, with a Lipschitz nonlinearity o, and in the
limit as the layers width ny.np_1 — oo, the NTK ©F) converges in probability to a deterministic
limiting kernel:

(L (L

o) el @ Id,, .

The scalar kernel (%)E,ﬁ). R™ x R™ s Ris defined recursively by
Ol (z, z') = XM (z, 2')
~(L+1 (L s (L+1 L+1 |
(T)l(ac_*_ Nz, 2') = (T):(x,)((l‘.tl',)z((g, 2") + 2D (2, '),

where

SED (2,2") =B (om0 (f (2)) & (f (2)],

taking the expectation with respect to a centered Gaussian process f of covariance X F), and where
o denotes the derivative of o.

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and
generalization in neural networks. Adv. Neural Inf. Proc. Sys., 31:8571-8580, 2018.

Thank you, questions ?

