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In this talk we address the simplest instance of the figure-ground problem, raised in 1921 

by the cognitive psychologist Edgar Rubin. The problem is to understand how human 

perception segments an image into foreground figures and their background. 

The simplest instance of the figure-ground problem is the closure problem. For 

psychologists, the interior of a Jordan curve is perceived as a figure, and its exterior as its 

background. 

For mathematicians, this is just the Jordan curve theorem. It is easily solved numerically: 

There is an elementary algorithm tagging the interior points of any rasterized Jordan 

curve in a digital image. 

This problem is therefore a good playground to evaluate how far we stand in artificial 

intelligence. 

We shall evaluate the performance of neural networks on this problem and attempt to 

explain it based on recent mathematical observations on the learning power of neural 

networks.
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Plan: 

Illustration first : learning the Jordan curve theorem by CNN

Analysis of a theorem by Pedro Domingos (*)

Various reformulations, consequences, discussion 

(*) DOMINGOS, Pedro. Every Model Learned by Gradient Descent Is 

Approximately a Kernel Machine. arXiv preprint arXiv:2012.00152, 2020.
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A vase or two human profiles?            The figure ground dilemma by Edgar Rubin (1921) 

Distinguishing frontal objects from their background is a fundamental problem of perception

RUBIN, Edgar. Figure and ground. Readings in perception, 1958.

MLA

Fig: https://en.wikipedia.org/wiki/Edgar_Rubin#/media/File:Rubin2.jpg

https://en.wikipedia.org/wiki/Edgar_Rubin#/media/File:Rubin2.jpg
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The  closure law 

There is a perceptual tendency to close a curve and to perceive its interior as an object, its 

exterior as background. This one geometric formulation of the figure/background dilemma.

Wertheimer, Max. "Untersuchungen zur Lehre von der Gestalt. II." Psychologische 

forschung 4.1 (1923): 301-350.

shape shape
shapeshape

background

background
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Illustration of the Jordan curve theorem. A Jordan curve (drawn in black) divides the 

plane into an "inside" region (light blue) and an "outside" region (pink).  This is the 

simplest version of the perception law of closure.  The inside region is the “figure”. 

The outside region the “background”

Jordan, Camille (1887), Cours d'analyse

Fig: https://en.wikipedia.org/wiki/Jordan_curve_theorem

https://en.wikipedia.org/wiki/Camille_Jordan
http://www.maths.ed.ac.uk/~aar/jordan/jordan.pdf
https://en.wikipedia.org/wiki/Jordan_curve_theorem


Illustration: a Shape Dataset

Given the boundary of a shape, the network has to reconstruct the shape
i.e classify each pixel of the image as belonging to the shape or not 

1,115 training images, data augmentation by random affine 
distortions, 140 test images, images of size 128x128 8



Illustration: the Shape Dataset

Particularity: it can be solved with 2 lines of code!
(Compute the parity of the number of crossings on a horizontal half-line starting from each pixel)

A lightweight CNN programmed ad hoc can do this task provided the receptive field is large enough, 
but then the question is: can this simple algorithm be learnt from examples? 

Minsky, M., & Papert, S. A. (1969). Perceptrons: An introduction to computational geometry. MIT press, 2017 

reedition.
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Illustration: the Shape Dataset

Can a network learn this very simple operation?

It’s an impossible task for CNNs working locally (*):
It requires a network with a significant depth (or non-local layers), or a U-net

(*) Minsky, M., & Papert, S. A. (1969). Perceptrons: An introduction to computational 

geometry. MIT press, 2017 reedition.

99.60%
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GAP: global average pooliing. SA: self-attention, GC: Global Context 



Illustration: the Shape Dataset

Can a network learn this very simple operation?

Trained with Ranger for 150 epochs, binary cross-entropy loss, batch size 32
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A simple candidate network: A U-Net with 6 scales



Illustration: the Shape Dataset

Can a network learn this very simple operation?

Examples of results (left: input, right: output)



Illustration: the Shape Dataset

Can a network learn this very simple operation?

The results are fine, even when tested on two or three shapes (the train set contains only one):

But does it mean it learned the best algorithm? 13



Illustration: the Shape Dataset

Can a network learn this very simple operation?

But does it mean it learned the best algorithm?   NO!
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Classic example of kernel: 
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Schölkopf, B., Smola, A. J., & Bach, F. (2002). Learning with kernels: support vector machines, regularization, 

optimization, and beyond. MIT press.
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Comparison of versions of the main formula

Version 2:

Version 1:
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Another illustration: a bigger training dataset

Given the boundary of a shape, the network has to reconstruct the shape
i.e classify each pixel of the image as belonging to the shape or not 

10,000 training images, data augmentation by random horizontal 
and vertical flips, 1,000 test images, images of size 256x256.
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Alvarez, L., Monzón, N., & 

M., J. M. (2018).

Interactive design of random 

aesthetic abstract textures 

by composition principles. 

Leonardo, 1-11,  MIT Press



Another illustration: a bigger training dataset

It performs better now
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Another illustration: a bigger training dataset

But it’s still not perfect!
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IOU: 51%

IOU: 85%

Alvarez, L., Monzón, 

N., & M., J. M. (2018).

Interactive design of 

random aesthetic 

abstract textures by 

composition principles. 

Leonardo, 1-11,  MIT 

Press
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An illustrative figure: a deep network as  « a superposition of training examples » 
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Some « deep remark » by the author
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Some « deep remarks » by the author
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Some « deep remark » by the author
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Some « deep remark » by the author
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Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., & Wang, R. (2019). On exact computation with an 

infinitely wide neural net. arXiv preprint arXiv:1904.11955.

Antecedents, Tangent neural kernel in the “infinitely wide limit”
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Thank you, questions ?


