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What 1s CM?

1,4 ¢, . . .
o Wiki: “involves mathematical research in areas of science

where computing plays a central and essential role,
emphasizing algorithms, numerical methods, and symbolic

methods.”

 Newton, Gauss, Richardson, Von Neumann,..



Modern History

- CM modern history after WWII
- Inst of Numer Analysis at UCLA 1947-1954
- SIAM founded April 1952

- Main professional society promoting CAM
- Journals: SINUM, SISC, MMS, SIIMS (AMS Comp Math)
- Conferences, SIAGs, reports
- Algorithms “founded” circa 1952
- SOR, CG, ADI, Simplex



CM & TC

« My UG/Grad CAM:

WKB, singular perturbation, asymptotics
Laplace/Fourier transforms, separation of variables, tensor analysis, game theory

NA from Issacson & Keller, Conte & De Boor, Dahlquist & Bjorck (GVL being written); NODE from Gear,
NPDE from Mitchell, K&O; CS algs; some CFD

Hardware: PDP 11, IBM 360 (cards!), HP35C, HP2000, arpanet
Software: JCL, Fortran, Basic, APL, ALGOL
Algorithms: Least sq, SVD, fast Poisson solvers, quasi-newton methods, ALM

* [ have worked on/participated in:

NPDE, NLA, MG, DD, CG, //, IP, Brain mapping, VLSI
Competition between finite difference vs finite elements for PDEs
NLA: Matrix factorizations, LS, QR, SVD, Lanczos, CG (GMRES etc), on Householder Symp Comm 1993-2005.
MG: From Brandt 78 MLAT paper on, MG for bifurcation probs, unstructured grids; EMG confs
DD: Chaired DD2 at UCLA 1988, on DDM Committee until DD12.
//: main frames, vector machines (Alliant), parallel machines (CM, Cosmic Cube, Ncube), GPU
Software: EISPACK, LINPACK, Matlab (before MathWork), Mathematica, Petsc
Applications:

*  CFD: MG/DD for unstructured meshes;

IP: TV, level set, L1, Compressed sensing

Brain mapping: Ricci flow, Yamabe eq, conformal mapping, Beltrami coef
VLSI opt: new paradigm, widely adopted in industry, hypergraphs

e Math I should have learned in school:

nonlinear analysis, differential geometry, stochasticity, BV, L1, Baysean



tps://www.top500.org/lists/2016/06/

TOP 10 Sites for June 2016

For more information about the sites and systems in the list, click on the links or view the complete list.

Rank Site

1

National Supercomputing Center in
Wuxi
China

National Super Computer Center in
Guangzhou
China

DOE/SC/0Oak Ridge National
Laboratory
United States

DOE/NNSA/LLNL
United States

RIKEN Advanced Institute for
Computational Science (AICS])
Japan

DOE/SC/Argonne National
Laboratory
United States

DOE/NNSA/LANL/SNL
United States

System

Sunway TaihuLight - Sunway
MPP, Sunway SW26010 260C
1.45GHz, Sunway

NRCPC

Tianhe-2 (MilkyWay-2) -
TH-IVB-FEP Cluster, Intel Xeon
E5-2692 12C 2.200GHz, TH
Express-2, Intel Xeon Phi 3151P
NUDT

Titan - Cray XK7 , Opteron 6274
16C 2.200GHz, Cray Gemini
interconnect, NVIDIA K20x
Cray Inc.

Sequoia - BlueGene/Q, Power
BQC 16C 1.60 GHz, Custom
IBM

K computer, SPARC64 VIIIfx
2.0GHz, Tofu interconnect
Fujitsu

Mira - BlueGene/Q, Power BQC

16C 1.60GHz, Custom
IBM

Trinity - Cray XC40, Xeon
E5-2698v3 16C 2.3GHz, Aries

Cores

10,649,600

3,120,000

560,640

1,572,864

705,024

786,432

301,056

Rmax
(TFlop/s)

93,014.6

33,862.7

17,590.0

17,173.2

10,510.0

8,586.6

8,100.9

June 2016 | TOP500 Super... X _

E1 ¢ Q top 500 supercomputers

Rpeak
(TFlop/s)

125,435.9

94,902.4

27,112.5

20,132.7

11,280.4

10,066.3

11,078.9

Embed Vie

4.1k people like this. Sign
Power what your friends like.

(kW)
15,371

17,808

8,209

7,890

12,660

3,945
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Rank Site

1 RIKEN Center for
Computational
Science
Japan

2 DOE/SC/Oak Ridge

National Laboratory
United States

3 DOE/NNSA/LLNL
United States

4 National
Supercomputing
Center in Wuxi
China

5 NVIDIA Corporation
United States

System

Supercomputer
Fugaku -
Supercomputer
Fugaku, A64FX
48C 2.2GHz, Tofu
interconnect D
Fujitsu

Summit - IBM
Power System
AC922, IBM
POWER9 22C
3.07GHz, NVIDIA
Volta GV100,
Dual-rail
Mellanox EDR
Infiniband

IBM

Sierra - IBM
Power System
AC922, IBM
POWER9 22C
3.1GHz, NVIDIA
Volta GV100,
Dual-rail
Mellanox EDR
Infiniband

IBM / NVIDIA/
Mellanox

Sunway
TaihuLight -
Sunway MPP,
Sunway SW26010
260C 1.45GHz,
Sunway

NRCPC

Selene - NVIDIA
DGX A100, AMD
EPYC 7742 64C
2.25GHz, NVIDIA
A100, Mellanox
HDR Infiniband

Cores

7,630,848

2,414,592

1,572,480

10,649,600

555,520

@ = 16%( ) 1M:21PM Wed Jan 27

Rmax Rpeak Power
(TFlop/s)  (TFlop/s) (kW)
442,010.0 537,212.0 29,899
148,600.0  200,794.9 10,096
94,640.0 125,712.0 7,438
93,014.6  125,435.9 15,371
63,460.0 79,215.0 2,646

5

NVIDIA Corporation
United States

National Super
Computer Center in
Guangzhou

China

Forschungszentrum
Juelich (FZJ)
Germany

Eni S.p.A.
Italy

Texas Advanced
Computing
Center/Univ. of
Texas

United States

Saudi Aramco
Saudi Arabia

Selene - NVIDIA
DGX A100, AMD
EPYC 7742 64C
2.25GHz, NVIDIA
A100, Mellanox
HDR Infiniband
Nvidia

Tianhe-2A - TH-
IVB-FEP Cluster,
Intel Xeon E5-
2692v2 12C
2.2GHz, TH
Express-2,
Matrix-2000
NUDT

JUWELS Booster
Module - Bull
Sequana XH2000 ,
AMD EPYC 7402
24C 2.8GHz,
NVIDIA A100,
Mellanox HDR
InfiniBand/ParTec
ParaStation
ClusterSuite

Atos

HPC5 -
PowerEdge
C4140, Xeon Gold
6252 24C 2.1GHz,
NVIDIA Tesla
V100, Mellanox
HDR Infiniband
Dell EMC

Frontera - Dell
C6420, Xeon
Platinum 8280
28C 2.7GHz,
Mellanox
InfiniBand HDR
Dell EMC

Dammam-7 -
Cray CS-Storm,

NMeow ~Ziasara

555,520

4,981,760

449,280

669,760

448,448

672,520

63,460.0

61,444.5

44,120.0

35,450.0

23,516.4

22,400.0

6

79,215.0

100,678.7

70,980.0

51,720.8

38,745.9

55,423.6

2,646

18,487

1,764

2,252



CSE2000 Top 10 Algorithms

Monte Carlo

Simplex

Krylov

Matrix decomposition
Fortran optimizing compiler
Francis QR

Quicksort
FFT

Integer relation detection
Fast multipole method

No update as of 1/28/2021



Other New Algorithmic Paradigms

Multigrid
DD
Multiscale
Uncertainty

Continuous vs discrete: Diff Equ vs graphs

2021: Deep Neural Networks?



Criteria

Speed (flops, comp complexity, time)
Accuracy

Scalability

Parallelism, communication/latency
Memory efficiency

Impact (internal and external)



Top 10 Most Cited Recent CM Papers (¢ 04/30/21)

Ref: Golub-Van Loan (4™ ed 2012): 52717/72912 citations! Metropolis et al (1953, J Chem
Phys) 31807 citations. Hestenes-Stiefel Conjugate Gradient (1952 JBS) 6379 citations.

%06104 1. '1(15794/?) Donoho, Compressed Sensing, IEEE TIT 2006
2(12242/17463) Osher-Sethian, level set, JCP 1988

3(10162/?7) Donoho, Soft Thresholding, IEEE TIT 1995
6(10157/17084) Candes-Romberg-Tao, Compr Sensing, IEEE TIT 2006
8(9281/15826) Rudin-Osher-Fatemi, TV denoising, Physica D 1992
5(9576/13061) Saad-Schultz, GMRES, SISC 1986
9(8223/12715) Chan-Vese, Segmentation, IEEE TIP 2001
4(9370/11937) Daubechies, Ortho Basis for Wavelets, CPM 1984
7(8795/7) Donoho-Johnstone, wavelet shrinkage, Biometrika 1994

. 10(4296/5803) Greengard-Rokhlin, Fast Multipole, JCP 1987

A S BRI

[
-

11. (3772/7) Brandt, Multigrid, Math Comp 1977

Most citations above are not by “peers” but by “users”.

LeCun, Bengio, Hinton “Deep Learning”, Nature 2015. 38352 citations!

Hinton “Image classification with Deep Convolution Neural Networks”, 2012. 85306 cites!



Computational Linear Algebra

EISPACK, LINPACK, LAPACK, Matlab
Matrix factorizations: QR, SVD, RRQR,
Tensors

Least sgs: LS, TLS

Sparsity: GE, ordering, fill-ins

Iterative meths: CG, Lanczos, GMRES,
preconditioners

Revived twice by: parallelism, search/Google,
completion/Netflix

11



Multigrid/Domain Decompositon

A paradigm shift
Russian influence

— motivated by efficient use of limited computer power

MLAT — Brandt

DD — motivated by parallel computers
Subspace decomposition & correction (Xu)
Fast Multipole Method — particle simulation

12



CEFD to IP

* FD has provided a challenging testbed for
CM for several decades

* Multi-dim, multi-component, mutli-scale,
nonlinear, discontinuities, complex
geometry/mesh, time-dep,

* [P is “new CFD”: all of above (except reg
mesh)

16



Imaging science

Relatively new to Math Community

Imaging journals:
SIAM SIIMS

JOURNAL OF MATHEMATICAL COMPUTER VISION
IMAGING AND VISION

IEEE TIP e [

SCIENCES

Gt & e

IMIV
UCV
Imaging conferences:
SIAM Imaging conference
Scale-Space conference
IEEE ICIP

The new “CFD”. Part of “ Data ¢

Siig

Scale Space
and Variational Methods
°in Computer Vision

Lecture Notes in
Computer Science 1252

S/AM Confe’ence on Thart tor M Ravwny  Liw Prnk
IMAGING SCIENCE . 205 Kemtuil Mook Virpo S
1 2012 IEEE International Conference ot
A . :
” in Computer Vision
il on Image Processing e
: b .;';;' September 30 - October 3, 2012 e
Lo Disney's Coronado Springs Resort * Orlando, Florida, U.S.A. S
. 4 i
May 12-14,2014 brnlr—-\sgac:*
Hong Kong Baptist University
Hong Kong

- 5
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SIAM Board of Trustees
Regular Session
July 15, 2006

Agenda Item 8
Page 1 of 9

Report of the SIAM Journal Committee on

“Proposal for a New SIAM Journal
on Imaging Sciences”,
submitted by Tony Chan and Kirk Jordan

Margaret Cheney ?L L NSTW 0 )
Edward Olmstead ‘ dry JW )
Mac Hyman o !
Tim Kelley (SIAM Vice-President for Publications) % "5y e A 7{7\
Tom Manteuffel Y
Nick Trefethen dohids
Benjamin White .
David Williamson e
Margaret Wright (chair) *‘/4,»1 Lé ¢ wa
July 2, 2006 Sme A enssls

oY C&N gy 7

R

1 Committee Charge; Review Process

Following an extended discussion at the July 2005 SIAM annual meeting in New
Orleans, the SIAM Council requested that Tony Chan and Kirk Jordan prepare a
proposal for a new SIAM journal in imaging sciences. The proposal was received by
SIAM on April 20, 2006. The SIAM Journal Committee was then asked by the Vice-
President for Publications, Tim Kelley, to review the proposal and prepare & report.
This report summarizes that review and will be presented to the SIAM Council in
Boston on July 13, 2006.

In conducting its review of the proposal, each member of the Journal Committee
was asked by Margaret Wright (its chair) to send comments on the proposal. Her
email of April 21, 2006, to the committee said:

It is now our job to make a recommendation to the SIAM Council
(which will meet in mid-July at the annual meeting) as to whether STAM
should establish such a journal.




What Math brings to IP

igital
mage usve MATLAB
Processing

4 Filtering in the Frequency Domain 164

4.4 Obtaining Frequency Domain Filters from Spatial Filters 180
4.5 Generating Filters Directly in the Frequency Domain 185

4.6 Highpass (Sharpening) Frequency Domain Filters 194

4.7 Selective Filtering 199

5 Image Restoration and Reconstruction 209

51 A Model of the Image Degradation/Restoration Process 210

5.2 Noise Models 211

5.3 Restoration in the Presence of Noise Only—Spatial Filtering 229

5.4 Periodic Noise Reduction Using Frequency Domain Filtering 236

5.6 Direct Inverse Filtering 240

5.7 Wiener Filtering 240

5.8 Constrained Least Squares (Regularized) Filtering 244

5.9 Iterative Nonlinear Restoration Using the Lucy-Richardson
Algorithm 246

]0 Morphological Image Processing 486

] ] Image Segmentation 535

Preview 535
11.1 Point, Line, and Edge Detection 536

11.1.1 Point Detection 536

11.1.2 Line Detection 538

11.1.3 Edge Detection Using Function edge 541
11.2 Line Detection Using the Hough Transform 549

IEEE TRANSACTIONS ON
IMAGE PROCESSING
A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY

Volume 7, Number 3, March 1998

Vicent Caselles, Jean-Michel Morel:

Introeduction To The Special Issue On Partial Differential Equations And Geometry-driven

Diffusion In Image Processing And Analysis. 269-273

Frangoise Dibos:
Projective analysis of 2-I) images, 274-279

Scott T. Acton:
Multigrid anisotropic diffusion. 280-291

Georges-Henri Cottet, Mokamed El-Ayyadi:
A Volterra type model for image processing. 292-303

Peter Blomgren, Tony F. Chan:

Color TV: total variation methods for restoration of vector-valued images. 304-309

Nir A. Sochen, Ron Kimmel, Ravi Malladi:
A general framework for low level vision. 310-318

Antonin Chambolle, Ronald A. DeVore, Nam-Yong Lee, Bradley J. Lucier:

Nonlinear wavelet image processing: variational problems, compression, and noise removal

through wavelet shrinkage. 319-335

Olivier D. Faugeras, Renaud Keriven:

Variational principles, surface evolution, PDEs, level set methods, and the stereo problem.

336-344

Anthony J. Yezzi Jr.:
Modified curvature motion for image smoothing and enhancement. 345-352

René A. Carmona, Sifen Zhong:

Adaptive smoothing respecting feature directions, 353-358
Chenyang Xu, Jerry L. Prince:

Snakes, shapes, and gradient vector Aow, 359-369

Tony F. Chan, Chiu-Kwong Wong:

Total variation blind deconvolution. 370-375

Vicent Caselles, Jean-Michel Morel, Catalina Shert:

An axiomatic approach to image interpolation. 376-386

Sylvie Teboul, Laure Blanc-Féraud, Gilles Aubert, Michel Barlaud:

Variational approach for edge-preserving regularization using coupled PDEs.}

WIN VRANRAL M O

Joachim Weickert, Bart M. ter Haar Romeny, Max A. Vierpever:

Efficient and reliable schemes for nonlinear diffusion filtering. 398-410
Affine plane curve evolution: a fully consistent scheme. 411-420

Michael J. Black, Guillermo Sapiro, David H. Marimont, David Heeger:
Robust anisotropic diffusion. 421-432

Kaleem Siddigi, Yves Bérubé Lauzidre, Allen Tannenbaum, Steven W. Zucker:
Area and length minimizing flows for shape segmentation. 433443

Frederic Guichard:

A morphological, affine, and Galilean invariant scale-space for movies, 444-456

Pictro Perona:
Orientation diffusions. 457467

Francis H. ¥. Chan, Francis K. Lam. Hui Zhu:
Adaptive thresholding by variational method. 468-473

1)




Image Processing and Applied Maths

PDEs (CFD, viscosity solution)
Calculus of variations
Differential geometry (level set method)
Smooth & non-smooth functional analysis
(wavelets/Besov, total variation/BV)

—

Compressed sensing, L1 optimization (Bregman)
Convexification for geometric problems
Relaxation for graph optimization problems

20



Compressed Sensing
Candes, Donoho, Romberg, Tao 2006

Sparsity: LO

Convexity: L1

Randomness: Restricted Isometry Property
Exact recovery

IPAM origin

TV Wavelet Inpainting connection

23



TV Wavelet inpainting [Chan, Shen & Zhou ‘04]

Can you recognize this person?

Original image downloaded from internet
Damaged image: 50% of wavelet coefficients
(including low frequencies) are randomly lost.

* Model I (for noise-less images):

%nn /|Vu| s.t. u= Zﬁj,kcbj,k, Bik = B})’k (observed coefs)
i,k .
7F - wavelets

No parameters. Problem dimension << #coefs.
» Model II (for noisy images):

rélin / [Vu| 4+ Ar|lu — uol]® (up observed image)
i,k

24



Restoration result

original image Received Ima Inpainted image by TV-Wavelets
ge ge by

Original image Damaged image, 50% of Model II: Recovered image,
wavelet coefficients are keeping undamaged
randomly lost. PSNR =10.9 coefficients unchanged.

el moce PSNR 18.8.

Received Image
Inpainted image by TV-Wavelets




PSNR comparison

PSNR vs %Coefs Retained "=z,

X-axis: percentage of randomly retained -

wavelet coefficients

Y-axis: improvements in PSNR after

inpainted by Model I (green) and Model 11 &

(red). As less coefficients are missed, the =
improvement in PSNR becomes larger. " ‘<

An Extreme Example

Upper left: Original clear square.

Upper right: Lost all but one nonzero coefficients in
the low-low frequency subband, while keep all high
frequencies (PSNR=11.2dB).

Lower left: Recovered by Model I. Perfect
reconstruction (PSNR=61dB).

Lower Right: Cross-section at x=128. The inpainted
profile is visually indistinguishable from the original. _

A preview of Compressed Sensing!




Compressed Sensing in IP
[Candes, Romberg & Tao ‘06, Donoho ’06]

Reconstruct the signal u in R® from m measurements f with m<<n :

f=Au, ueR" feR™ AcR"™™ (system is underdetermined)

Assume u is sparse then the problem is: mgn |Pullp s.t. f=Au

Theorem: For m>=c.log n, the signal u can be reconstructed exactly
(under reasonable assumptions) solving the problem:

min ||Qul|; s.t. f= Au L1 relaxation (tight)

For H\IIU,H TV / |Vu\ and A — R { : sensing basis (wavelet, Fourier)
1 =

R: measurement extractor

=> The CS problem is equivalent to the TV wavelet inpaiting problem.

27



Algorithm Connections, Old and New

Quadratic Penalty H

Uzawa’s Method H

Proximal Forward Backward Splitting H

Arrow-Hurwicz H

Preconditioned Method of

Multipliers/ Proximal H
Method of Multipliers
Preconditioned ADMM H

(Linearization of penalty also
related to surrogate function
and optimization transfer)

Newton-like Methods H

Penalty method (Reformulates total variation penalty as
constrained optimization problem) [Wang, Yin, Zhang 2007]

Linearized Bregman (Efficient for large scale problems)
[Darbon, Osher, Yin, Goldfarb 2007]

Fixed Point Continuation (FPC) and many related
iterative thresholding methods for L1 minimization

[Hale, Yin, Zhang 2007]

Primal Dual Hybrid Gradient (PDHG) (Excellent for
TV denoising) [Zhu, Chan 2008]

Bregman Operator Splitting (BOS) (Proposed for

nonlocal TV; very generally applicable) [Zhang, Burger,
Bresson, Osher 2009]

Split Inexact Uzawa, Modified PDHG,
Chambolle/Pock Method, He/Yuan Variants... (Many

versions of this very versatile method) [Zhang, Burger,
Osher, Esser, Chan, Chambolle, Pock...2009]

CGM [Chan, Golub & Mulet '95]

Semismooth Newton for TV [Hintermuller, Stadler]
(Uses second order information, can be superlinearly
convergent)

28



NSk =

10.

I _essons

Right model more important than fast algorithm

Simplicity trumps everything else

Proof is good (but not absolutely necessary) but good idea is a must
Old methods can find new use: IP opt

New applications can inspire new CM: IP, search

Hardwares change, good 1deas last: Hypercubes, Connection Machine

Ideas for one problem can be useful for another
1. TVD for shock capturing -> TV for IP

What appears different may be related
1. IP: PDE vs graph modelling & algorithms

New Math plus old tricks - differential geometry + ALM
Be the first to spot a math idea or a rich application

29



Future

Plenty of challenges 1n basic S&E

Biology (genetics, brain, diseases,....)
Big data (mining, learning,...)

Uncertainty (Quantization, randomization...)

IP to Vision, Comp Photographys,..

New math; New applications
2021: Machine Learning — the new CFD?

30



Back to the Future?

11:56 PM_ Wed Jan 27 P2

TT Thirty years of Applied Mathematics

w‘"
' ' \ Abstract
Z b The 50's to the 80's saw tremendous growth of applied math, driven mainly by PDEs and

numerical algorithms. The integration of the two produced the "Courant School", which has
had a far-

caching impact on applied math and beyond, particularly in the area of fluid
mechanics.
httpS://WWW.pnn|.g0v/c0mputing/phi|ms/ Since the 90's, the Courant school has faced some serious challenges. On one hand, a lot of

the basic problems in numerical analysis and PDEs were already solved, the ones left proved

to be truly difficult. On the other hand, efforts to move beyond fluid mechanics have not

PhILMs: Collaboratory on Mathematics and Physics-Informed Learning Machines o I i o
reproduced the kind of success that applied math had in fluid mechanics. In fact, during this

For Multiscale and MU|tithSiCS Problems period of time, applied math benefited more from the growth of signal processing, such as
wavelets, image processing and compressed sensing.

7 Sandia e

b . _ [ [ o . . . - :
Pacific National E @ platform for the natural integration between the first principle-driven PDE school and the

Machine learning has come to the rescue for the Courant school, and it also provides the

Northwest Laboratories

BROWN data-driven harmonic analysis/statistics school. The integration of these two schools of
thoughts will give rise to unprecedented power for solving the problems we have faced in Prof. Weins E
applied math and computational science. At the same time, it also provides the final missing rot. einan
component for applied math to become a mature scientific discipline with a unified scope Princeton University
and curriculum that will boost our ability to attract and educate young talents.

Biography

Professor Weinan E obtained his BS degree from the University of Science
and Technology of China in 1982 and his PhD from the University of
California at Los Angeles in 1989. He is currently a professor in the

Date:

Center Director: George Em Karniadakis 11 Nov 2020, Wednesday

PNNL & Division of Applied Mathematics, Brown University
Time: Department of Mathematics and Program in Applied and Computational
2pm-3pm Mathematics at Princeton University. Profe

contributions to homogenization theory, theoretical models of turbulence,

The CRUNCH group: Home of “Math + Machine Learning + X”
https://www.brown.edu/research/projects/crunch/home

sor E has made tremendous

Venue: stochastic partial differential equations, electronic structure analysis,
Online via Zoom multiscale methods, computational fluid dynamics, and machine learning

31
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Carnegie Initiative on the
Doctorate

566

In 2001 The Carnegie Foundation for the Advance-
ment of Teaching launched a multiyear project to
examine the doctoral degree in the United States.
Entitled the Carnegie Initiative on the Doctorate (CID),
the project aims to stimulate rethinking and renewal
of doctoral programs in six disciplines, one of which
is mathematics. During 2003 the CID will publish a
set of twelve essays, two in each discipline, about
doctoral education. And earlier this year, thirty-two
“partner departments”, including eight mathemat-
ics departments, were chosen as participants in the
initiative.

Founded by Andrew Carnegie in 1905, the
Carnegie Foundation has a long tradition of carry-
ing out research and policy studies in education. One
of its most famous and influential projects was
the 1910 “Flexner report”, a tough indictment of
medical schools in the United States that led to
widespread reform. It was partly because of his
fame as author of that report that Abraham Flexner
became the founding director of the Institute for
Advanced Study. Although the Flexner report is
sometimes mentioned in connection with the CID,
the similarity is not strong. “Of course we would like
[the CID] to be influential,” remarked Chris Golde,
research director for the CID. The difference is that
Flexner clearly had an agenda in mind when he
wrote his report, while the CID does not. “We are
committed to that [agenda] needing to arise from
the disciplines,” Golde said.

In fact, the CID does not even take it for granted
that doctoral education needs a huge overhaul. “I
don’t see [the CID] as necessarily dramatically
changing what we do,” said Kevin Corlette, chair of

NOTICES OF THE AMS

the University of Chicago mathematics department,
one of the CID participating departments. “The
idea is to go back to basic questions about what we
are trying to accomplish in doctoral education and
to think about what we could do differently or
better.” A sign of the excellence of U.S. doctoral
programs is that they attract students from all
over the globe. Still, evolution in the societal and
academic contexts in which these programs exist
has sometimes caused mismatches between the
goals of doctoral programs and what is expected
of the programs’ graduates. The idea of the CID is
to ask anew the question, What is the purpose of
doctoral education today? George Walker, a theo-
retical physicist at Indiana University who serves
as the CID project director, said the main goal is to
“convince people to think carefully and deeply
about PhD programs, and then to act on their
thoughts, just as they do in their disciplinary re-
search.”

An organizing notion for the initiative is that
doctoral programs should produce “stewards of the
discipline”. In addition to having made an original
contribution to research in the discipline, a stew-
ard possesses perspective on the history of the
discipline, on the “big questions” and ideas that
drive the field, and on its relations to other areas.
A steward should also be a communicator in the
broadest sense: someone who not only can teach
students effectively but also can communicate in
such a way that the tools and ideas of the discipline
are available to those outside it. The notion of a
steward of the discipline “calls in an ethical
dimension,” Golde remarked. “It's about integrity.

VoLuMe 50, NUMBER 5
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It’s about, What are your responsibilities to the
discipline?”

The CIDis “conceptuallybased,” Golde explained.
“Its heart is in ideas, not in very specific practices.”
The purpose is not, say, to promote the use of inter-
disciplinary team projects in doctoral programs.
Rather, the goal would be to get departments to think
carefully about the communication skills that stew-
ards of the discipline should possess. Departments
would then consider what kinds of experiences—
team projects may be one of them—would lead to
the development of those skills. As Walker put it,
“What experiences should future stewards of the field
have in graduate school to allow them to evolve and
beeffective inafuture we can’timagine, a future thirty
or fifty years from now?”

Six fields were chosen for the CID: chemistry,
education, English, history, mathematics, and
neuroscience. There were several reasons for
choosing these particular disciplines. One was the
aim of including disciplines that span a wide area
of academe. Carnegie also looked for central, fun-
damental fields where there are a large number of
doctoral programs and students. The inclusion of
neuroscience reflected the desire to bring in a mul-
tidisciplinary field.

In addition, Carnegie sought areas in which
discussions of the doctorate were already taking
place, and in that regard mathematics was a nat-
ural choice. Over the past decade or so the math-
ematical community has engaged in intensive
discussions about the doctoral program. Among the
major stimulants of these discussions were the
reports Educating Mathematical Scientists: Doctoral
Study and the Postdoctoral Experience in the United
States (National Academy Press, 1992) and Towards
Excellence: Leading a Doctoral Mathematics
Department in the 21st Century (AMS, 1999). These
discussions influenced the i of the

CID Participating Mathematics Departments
Partner Departments

Duke University

Ohio State University

State University of New York, Stony Brook
University of Chicago

University of Illinois, Urbana-Champaign
University of Michigan, Ann Arbor
University of Nebraska, Lincoln
University of Southern California

Allied Departments

Howard University

Kent State University

University of North Carolina, Chapel Hill
University of Utah

completed in spring 2003 and will eventually be
published together as a book.

The second part of the CID began in early 2003
with the selection of thirty-two “partner depart-
ments”. These departments have made a commit-
ment to undertake a thorough examination of
their doctoral programs. The intention is that the
commissioned essays will stimulate the depart-
ments’ discussions. CID staff will visit the partner
departments, not for the purpose of evaluating
them, but rather to encourage discussions and
bring in new ideas. There will also be periodic
meetings of partner department representatives,
the first one taking place in July 2003 at the
Carnegie headquarters on the campus of Stanford
University. After the initial conceptual phase, the
departments will experiment with new ways of
designing doctoral programs. In the “research and
di ination” stage, departments will evaluate

VIGRE (Vertical Integration of Research and
Education in the Mathematical Sciences) program
of the National Science Foundation, which has
stimulated much innovation and change in doc-
toral programs.

To begin the CID, Carnegie commissioned the
writing of twelve essays, two in each of the six
disciplines, that explore the purpose of doctoral ed-
ucation and the notion of “stewards” in the context
of each discipline. The essays are not “how-to”
manuals for structuring doctoral programs; their
purpose is not to tell departments what to
do but rather to provoke discussions within
disciplines and across academe. The essays in
mathematics were written by Hyman Bass of the
University of Michigan, who is now past president
of the AMS, and Tony Chan of the University of
California, Los Angeles (the essays by Bass and
Chan will be published in future issues of the
Notices). All of the essays are scheduled to be

May 2003

the outcomes of their experiments and share them
with colleagues at other institutions; the Carnegie
Foundation will also help to publicize ideas and
results growing out of the CID.

The departments were chosen after a call for
applications was issued last fall. Because there
were more worthy applications than it could
accommodate, Carnegie also selected some “allied
departments” that can participate in discussions
and receive materials but which will not have site
visits or support for attending CID meetings. (See
the sidebar for alisting of partner and allied math-
ematics departments.)

The VIGRE program has had an enormous effect
on mathematics departments across the country,
spawning innovations in education at the under-
graduate and graduate levels. One reason for the
large impact is that the goals of VIGRE are backed
by grant dollars. By contrast, the CID provides
essentially no funding to its partner departments
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The Carnegie Foundation commissioned a collection of essays as part of the Carnegie Initiative on the Doc-
torate (CID). Essays and essayists represent six disciplines that are part of the CID: chemistry, education,
English, history, mathematics, and neuroscience. Intended to engender conversation about the concep-
tual foundation of doctoral education, the essays are a starting point and not the last word in discipli-
nary discussions. Those faculty members, students, and administrators who work in the discipline are
the primary among multiple audiences for each of these essays. © 2003 by the Carnegie Foundation for
the Advancement of Teaching. Reprinted with permission.

Comments on the essays and on the CID are welcome and may be sent to cid@
carnegiefoundation.org. Further information may be found at the website http://www.
carnegiefoundation.org/cid and in the article “The Carnegie Initiative on the Doctorate”, by Allyn
Jackson, Notices, May 2003, pages 566-8.

The other Carnegie essay about mathematics, by Hyman Bass, appeared in the August 2003 issue of

the Notices, pages 767-76.

—Allyn Jackson

ne can argue, with ample evidence, that

in U.S. universities the system of pro-

ducing mathematics doctorates is

doing very well and needs no major

overhaul. It is widely recognized that
however poor our K-12 mathematics education—
and perhaps also our undergraduate mathematics
education—might be, our graduate programs in
mathematics are the best and the envy of the world.
Top students from around the world are still beat-
ing on our doors to get into our doctoral programs.
We train them well, and many of these students be-
come international leaders in their research fields.
Take, for example, the two 2002 Fields Medalists
and the Nevalinna Prize winner. Even though the
press (at least the press in Beijing, where I read
the news) referred to them as French, Russian, and
Indian, two received their doctoral training at U.S.
universities. We also seem to be succeeding in
getting new support from the federal government
for mathematical sciences. The recent increase in

Tony F. Chan is professor of mathematics and the dean

of the Division of Physical Sciences at the University of

California, Los Angeles. His email address is chan@math.
ucla.edu.
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funding for the NSF [National Science Foundation]
specifically targets the Division of Mathematical
Sciences, and doctoral training, in particular for
U.S. students, is a core part of this new funding
program. Even Hollywood seems to be working in
our favor, in view of the generally positive image
of mathematics generated by movies such as A
Beautiful Mind.

However, there are many signs that not all is
well with our doctoral programs. Top, talented
students, especially those born in the U.S., are
choosing fields other than mathematics for
graduate study. Many mathematics departments,
especially those outside the “top tier”, are having
trouble filling their graduate programs with rea-
sonably prepared and talented students. As a field
of science, mathematics is underfunded compared
to other sciences. Most of our doctoral students are
supported by teaching assistantships rather than
by fellowships or research assistantships. Our
doctoral students are taking too long to get their
degrees, and they are not sufficiently and broadly
trained for career paths outside of academia. Other
scientists and academic administrators perceive
us as an insular and, worse, irrelevant community.
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