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Computed Tomography (CT)

Applications in medicine, materials science, industrial inspection, etc.

Medical scanner Lab scanner

Synchrotron Inspection of pipe
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Reconstruction Methods

Filtered Back Projection (FBP)
Very fast, low memory, good results with lots of good data.
But artifacts appear with noisy and/or limited data.
Cannot incorporate constraints (e.g., nonnegativity).

Algebraic Iterative Reconstruction – Kaczmarz, Cimmino, SIRT, etc.
Very flexible – no assumptions about the CT scanning geometry.
Easy to incorporate convex constraints (e.g., nonneg./box constraints).
Often give good reconstructions with noisy and/or limited data.

Data (sinogram) FBP Kaczmarz
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Algebraic Iterative Reconstruction (AIR) Methods

Let A = discretization of forward projection (the Radon transform).
Consider consistent systems:

Ax = b, A ∈ Rm×n, x ∈ Rn, b ∈ Rm .

Simultaneous iterations such as Cimmino’s method

xk+1 = xk + ω ATM (b − Axk), M = diag(‖A(i , :)‖−2
2 ).

Row-action methods such as Kaczmarz’ method

x`+1 = x` + ω
bi − A(i , :) x`

‖A(i , :)‖22
A(i , :)T , i = ` mod m.

Column-action methods = coordinate descent methods

x`+1
i = x`i + ω A(:, i)T

(
b − A(:, i) x`i

)
, i = ` mod n.
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Example of Iteration Progression
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Asymptotic Convergence

Let E(·) = expected value, x̄ = A−1b, and κ = ‖A‖2 ‖A−1‖2.

Cimmino’s method (simultaneous iterations) – Nesterov (2004)

Assume that A is invertible and scaled such that ‖A‖22 = m.

‖xk − x̄‖22 ≤
(
1− 2

1 + κ2

)k
‖x0 − x̄‖22

Kaczmarz’s Method – Galántai (2004); Strohmer and Vershynin (2009)

Assume that A is invertible and that all rows are scaled to unit 2-norm.

E
(
‖x` − x̄‖22

)
≤
(
1− 1

n κ2

)̀
‖x0 − x̄‖22

In both cases we have linear convergence.
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Modelling: Forward and Back Projections

Forward projection R, the Radon transform models the scanner physics
via integration of the image f along lines Lθ,s

R[f ](θ, s) =

∫
Lθ,s

f (x1, x2) d` = g(θ, s) = sinogram .

Back projection B = adjoint(R), an abstraction, smears g back along Lθ,s

B[g ](x1, x2) =

∫ 2π

0
g(θ, x1 cos θ + x2 sin θ) dθ .
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Discretization: Examples of Models

Forward: strip model Forward: line model Back projection model

Reflects the physics Ray driven Pixel driven
Not suited for GPUs Suited for GPUs Suited for GPUs

Line model: start from detector element centers.
Back projection model: start from image pixel centers.
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Unmatched Projectors

Action of forward projector R! Multiplication with A.

Action of back projector B = adjoint(R) ! Multiplication with B .

When we can store A then we use AT for the back projection B .

When A is too large to store, we must use matrix-free multiplications of
the forward projector and back projector.

HPC software: computational efficiency takes priority → B 6= AT .

Cimmino’s method

xk+1 = xk + ω BM (b − Axk) .

Kaczmarz’ method

x`+1 = x` + ω
bi − A(i , :) x`

‖A(i , :)‖22
B(:, i) , i = ` mod m .

What can we say about the convergence of these methods?
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Convergence Analysis for Unmatched Pairs

For simplicity we focus on the simple BA Iteration

xk+1 = xk + ω B (b − Axk) , ω > 0 .

Generally not related to solving a minimization problem!

It is a fixed-point iteration whose convergence depends on the product BA.
Any fixed point x∗ satisfies the unmatched normal equations

BAx∗ = Bb .

Shi, Wei, Zhang (2011); Elfving, H (2018)

The BA Iteration converges to a solution of BAx = Bb if and only if

0 < ω <
2Re(λj)

|λj |2
and Re(λj) > 0, {λj} = eig(BA) .

Zeng & Gullberg (2000): similar analysis but ignoring complex λj .
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Perturbation Theory

Consider this scenario

A = Ā + δA , B = ĀT + δB , b = b̄ + e

and let x̄ denote the unperturbed solution to ĀTĀ x = ĀT b̄.

Using results from Elfving, H (2018)

Write the unmatched normal equations as

BA (x̄ + δx) = Bb .

Omitting higher-order terms, we obtain:

‖δx‖2 .
1
σr

(
‖PR(Ā) e‖2 + ‖δA x̄‖2

)
+

1
σ2
r

‖δB (b̄ − Ā x̄)‖2

σr = smallest nonzero sing. value of Ā; PR(Ā) = orthog. proj. on R(Ā).

For inconsistent systems, the solution is more sensitive to δB than δA.
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Convergence Analysis: Split the Error

First assume that Re(λj) > 0 ∀ j is satisfied, i.e., we have convergence.

Let x̄k denote the iterates for a noise-free right-hand side. We consider:

xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error

We expect the iteration error to decrease and the noise error to increase.

Then we have semi-convergence, when the noise error starts to dominate:
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Noise Error for BA Iteration

The noise error xk − x̄k reveals how the errors e in the right-hand side
propagate during the iterations.

From the definition of the BA Iteration it follows that

xk − x̄k = (I − ω BA) (xk−1 − x̄k−1) + ω B e ,

and hence by induction, and assuming x0 = x̄0, it follows that

xk − x̄k = Ske with Sk = ω

k−1∑
j=0

(I − ω BA) jB .

Elfving, H (2018)

Similar to iterations with a matched transpose, with b = A x̄ +e we have

‖xk − x̄k‖2 ≤ (ω cBA‖B‖2) k ‖e‖2
where we define the constant cBA by: supj ‖(I − ω BA) j‖2 ≤ cBA.
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Numerical Experiments – the Influence of Unmatching

64× 64 image, 180 proj., 91 detector pixels, A is 16, 380× 4, 096.
The unmatched transpose satisfies ‖B − AT‖F/‖A‖F = 0.406.
Noisy b = b̄ + e: Gaussian white noise with ‖e‖2/‖b̄‖2 = 0.01.
Both A and B have full rank.
All real parts of the eigenvalues of BA are positive
(the smallest real part is 9.35 · 10−7).

We show: xk − x̄︸ ︷︷ ︸
total error

= xk − x̄k︸ ︷︷ ︸
noise error

+ x̄k − x̄︸ ︷︷ ︸
iteration error
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Cimmino’s method.

Test problem

B 64× 64 phantom
B 180 projections at
B 1◦, 2◦, 3◦, . . . , 180◦

B m = 16 380
B n = 4 096

Iteration error: both versions converge to x̄ ; the one with B 6= AT is slower.
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Cimmino’s method.

Test problem

B 64× 64 phantom
B 180 projections at
B 1◦, 2◦, 3◦, . . . , 180◦

B m = 16 380
B n = 4 096

Iteration error: both versions converge to x̄ ; the one with B 6= AT is slower.
Noise error: the one for B 6= AT increases faster.
Total error: semi-convergence, the iteration with B 6= AT reaches the min.
error ◦ 1.181 after 1314 iterations. This error is 48% larger than the min.
error ◦ 0.796 for the iterations with AT , achieved after 3225 iterations.
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How to stop at the point of semi-convergence?

Notation: η2 = E(‖e‖22) and tk = trace(AA#
k ) with xk = A#

k b.

1 Discrepancy principle

‖b − Axk‖22 ≈ η2 .

2 Unbiased predictive risk estimation

minimize Uk = ‖b − Axk‖22 + 2 η2 tk − η2 m .

3 Generalized cross validation

minimize Gk =
‖b − Axk‖22

(m − tk)
.

4 Normalized cumulative periodogram
stop when the power spectrum of b − Axk resembles white noise.

But this is another talk.
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Did We Prove Semi-Convergence?

Not really:
we give an upper bound for the noise error;
this bound increases with k ,
and it seems to track the actual noise error in numerical experiments.

This supports the observed behavior of

total error = iteration error + noise error.

But we also need a lower bound for the noise error, that increases with k :
If the right-hand side error e ∈ N (B) then the lower bound is 0 (this
is extremely unlikely).
A lower bound for Kaczmarz’s method was derived in van Lith, H,
Hochstenbach (2021).
Currently no known lower bound for the BA Iteration.
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Numerical Example (no Noise) with Negative Real Parts

Now we consider the case where some Re(λj) < 0, i.e., no convergence.

Parallel-beam CT, unmatched pair from ASTRA, 64× 64 Shepp-Logan
phantom, 90 proj. angles, 60 detector pixels, minRe(λj) = −6.4 · 10−8.
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Eigenvalues with Negative Real Parts – What To Do?

1 Ask the software developers to change their implementation of
forward projection and/or back projection?
→ Significant loss of computational efficiency.

2 Use mathematics to fix the nonconvergence.
→ What we do here.

Take inspiration from the Tikhonov problem

min
x

{
‖Ax − b‖22 + α ‖x‖22

}
,

for which a gradient step takes the form

xk+1 = xk − ω (AT (b − Ax) + α xk)

= (1− αω) xk + ω AT (b − Axk) .

Note the factor (1− αω).
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The Shifted BA Iteration

Many thanks to Tommy Elfving
for originally suggesting this.

We define the shifted version of the BA Iteration:

xk+1 = (1− αω) xk + ω B (b − Axk) , ω > 0

with just one extra factor (1− αω); simple to implement.

This Shifted BA Iteration is equivalent to applying the BA Iteration with
the substitutions

A→
[
AA√
α I

]
, B →

[
B ,
√
α I
]
, b →

[
b
0

]
.

Hence it is “easy” to perform the convergence analysis . . .
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Convergence Results

Dong, H, Hochstenbach, Riis (2019)

Let λj denote the eigenvalues of BA.
Then the Shifted BA Iteration converges to a fixed point if and only if
α and ω satisfy

0 < ω < 2
Reλj + α

|λj |2 + α (α + 2Reλj)
and Reλj + α > 0 .

The fixed point x∗α satisfies

(BA + α I ) x∗α = Bb .

This result tells us how to choose the shift parameter:

Choose α just large enough that Reλj + α > 0 for all j .
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“Perturbation” Result

How much do we perturb the solution x̄∗α – the fixed point – when we
introduce α > 0?

Dong, H, Hochstenbach, Riis (2019)

Assume that BA+α I is nonsingular and the right-hand side is noise-free
with b = b̄ = A x̄ . Then the corresponding fixed point x̄∗α satisfies

x̄ − x̄∗α = α (BA + α I )−1x̄ .

Notice the factor α.

With a small α – just large enough to ensure convergence – we compute a
slightly perturbed solution (instead of computing nothing).
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Eigenvalue Estimates

We need to compute an estimate of the leftmost eigenvalue of BA, i.e.,
the eigenvalue with the minimal real part.

Bring in “Mr. Eigenvalue”
Michiel E. Hochstenbach.

In our paper we discuss different iterative algorithms:
Matlab’s eigs(_,_,’smallestreal’) (calls ARPACK):
baseline algorithm.
Algorithms by Meerbergen and coauthors:
robust but need too many matrix-vector multiplications.
Krylov-Schur method by Stewart (∼ implicitly restarted Arnoldi):
30% faster than Matlab’s eigs.
Jacobi-Davidson: slower than Krylov-Schur.

Our choice: Krylov-Schur.
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Numerical Results – Divergence and Convergence

Parallel-beam CT, 128× 128 Shepp-Logan phantom, 90 projection angles
in [0◦, 180◦], 80 detector pixels; m = 7 200 and n = 16 384.
Both A and B are generated with the GPU-version of the ASTRA toolbox.

ρ(BA) = 1.76 · 104

α = 1.85

The BA Iteration diverges from x̄∗ = (BA)−1Bb̄.
The Shifted BA Iteration converges to fixed point x̄∗α = (BA + α I )−1Bb̄.
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Numerical Results – Reconstruction Errors

The BA Iteration diverges from the ground truth x̄ .
The Shifted BA Iteration

Without noise: converges to a solution x̄∗α that approximates x̄ .
With noise: first semi-convergence, then convergence to x∗α.
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Conclusion

The main criterion for convergence is that all eigenvalues of the
iteration matrix must have positive real part.

If violated, we introduce a small shift that ensures convergence to a
fixed point that is a slightly perturbed solution (∼ Tikhonov).

The shift is computed via estimation of the leftmost eigenvalue.

Numerical results confirm our convergence results.

Current work focuses on solving the unmatched normal equations
BAx = Bb via Krylov subspace methods.
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