
Learning to Optimize

Wotao Yin

Alibaba Damo Academy

CUHK MATH-IMS Applied Mathematics Colloquium Series

1.
Background

2

Machine learning and Optimization

Answers are given as
existing data

ML learns from data to
give answers in the future

No answer is given; but
we know how to evaluate
how answers are.

OPT finds answers with
best evaluations

3

L2O uses experience to “optimize faster” or “generate
better solutions” in the future.

Induction Prescription

4

Classic optimization Learning-to-optimize

When to consider L2O

▷ Having many samples of
good solutions

▷ But it is hard to write a
good analytic model
(e.g., inverse problems)

L2O finds better solutions
by learning a model or
method.

▷ Having many samples of
good solutions

▷ Solving similar
optimization problems
repeatedly

L2O finds similar solutions by
taking a “fast shortcut”.

6

Basic formulation

Consider

▷ Consider GD iteration:

7

Basic formulation

Consider

▷ Consider GD iteration:

▷ Introduce free parameters
○ Let represent all the iterates and gradients till 𝑡
○ Use where is parameterized by

8

Basic formulation

Consider

▷ Consider GD iteration:

▷ Introduce free parameters
○ Let represent all the iterates and gradients till 𝑡
○ Use where is parameterized by

▷ L2O formulation (Andrychowicz et al’NIPS16):

9

model-based vs model-free
▷ 𝑔 has a form of an

existing method or
uses it as a starting
point

▷ L2O searches for the
best values of some
parameters

▷ You may combine this
L2O with classic
methods in various
ways

▷ 𝑔 is based on universal
approximators, e.g.,
multi-layer neural
networks or recurrent
neural networks.

▷ L2O is set to discover
completely new update
rules without referring
to any existing updates
(other than being
iterative)

10

2.
Model-Free L2O
based on RNNs, especially LSTMs

11

RNN and unfolding

12

Wichrowska et al’17; Metz et al’ICML19; Li-Malik’ICLR17; Bello et al’ICC17; Jiang et al’18;

Many model-free L2O uses LSTM

13

Andrychowicz et al’NIPS16; Chen et al’ICML17; Lv-Jiang-Li’17; Cao et al’NeurIPS19; Xiong-Hsieh’20

14

Challenges: network depth

▷ Deep networks have high memory costs

▷ Shallow networks cannot run more iterations

16

3.
Model-Based L2O

Plug-n-Play, Unrolling, Safeguarding, etc.

18

Unrolling by example: LASSO

19

Unrolling

▷ Limit to K iterations, trained end-to-end trained

▷ Okay to reduce parameters without performance loss (Chen et. al. NeurIPS’18 & Liu
et. al. ICLR’19)

▷ Popular and successful in inverse problems, PDEs, and graphical models
20

Challenges

▷ Unroll length: more layers yield better performance but are
difficult to train.

▷ Capacity: only provably better in very narrow cases (Liu et
al’ICLR18).

▷ Trainability: lacks performance guarantee.

▷ Generalization: when and what if L2O fails?

21

Safe-guarding

(Heaton et al.20) L2O convergence can be ensured
by incorporating an “energy” E

When L2O fails to decrease the energy, the classic
update 𝑇 will take over in that iteration

22

Test: Recover a sparse vector
from noisy measurements

▷ Fix 𝐴; vary sparse vectors and noise

▷ Training loss is squared-L2 to the true signal

▷ Unroll to 16 layers

23

Learn to recover the signal

24

Learn to solve the LASSO model
(with safeguards)

25

Plug-and-Play: background

▷ Consider

▷ ADMM:

▷ Interpretation in imaging
○ Step 1: noisy image → less noisy image

○ Step 2: less consistent →more consistent with data
26

Non-prox denoisers

▷ State-of-the-art denoisers are prox of certain functions:
○ NLM, BM3D, CNN

▷ However, still have the interpretation

▷ Q: how to integrate into iterations like ADMM?

27

Plug-and-Play

▷ (Venkatakrishnan et al’GlobalSIP13) PnP ADMM:

▷ Works surprisingly well!

28

Example: Super resolution

29(Chen-Wang-Elgendy’17)

Good:
▷ Infinite depth (unrolling length is not an issue)

▷ Has convergence guarantees (Ryu et al’ICML19) if
○ 𝐼 − 𝐻𝜎 is Lipschitz
○ 𝑓 is strongly convex

▷ Denoise 𝐻𝜎 is pre-trained before plugged in
(Training is not end-to-end)

▷ Good performance cannot be explained

32

Limited:

Deep Equilibrium (Fixed Point Network)

▷ (Bai et al’NeurIPS19) Instead of finite
iterations, use infinite iterations (in theory)
to output a fixed point

▷ Related to (Chen et al’NeurIPS18) Neural
ODE, based on black-box ODE solver

▷ We can modify (i.e., train) the iterator or
ODE model in an end-to-end manner

33

Example

• Explicit network

𝑢 = 𝑄Θ 𝑑
𝑦 = 𝑆Θ(𝑢)

• Fixed-point network

𝑢 = 𝑄Θ 𝑑

solve 𝑢⋆ = 𝑅Θ 𝑢⋆; 𝑢
𝑦 = 𝑆Θ 𝑢⋆

(Can replace 𝑢⋆ by an
approximate ෤𝑢)

(Heaton et al’21, Gilton et al’21)

34

Back propagation

▷ Compute gradients w.r.t. parameters Θ

▷ Define and

35

Back propagation

▷ Compute gradients w.r.t. parameters Θ

▷ Define and

▷ exists a.e. if 𝑇Θ is
Lipschitz and 𝑇Θ is a contraction for each 𝑑

36

Back propagation

▷ Compute gradients w.r.t. parameters Θ

▷ Define and

▷ exists a.e. if 𝑇Θ is
Lipschitz and 𝑇Θ is a contraction for each 𝑑

▷ Despite of infinite depth, backprop through
𝑇Θ has finite computation and storage!

37

Jacobian-free back propagation

▷ (Heaton et al’21) while forward propagation
uses a fixed point, it suffices to use 𝑇Θ during
back prop. No Jacobian, no matrix inverse!

▷ Significance: huge speedup, allows complicated
𝑇Θ (e.g., from operator splitting)

▷ Has a proof under Lipschitz and contraction
conditions

38

39

40

41

4.
Application

Learn to Predict a Game

42

Contextual Game

▷ 𝑑 represents the game contextual information,
known to all the players

▷ We wish to predict game outcomes knowing only 𝑑

▷ Also train a player to play the game competitively

43

Nash equilibrium

▷ 𝐾 self-interested players

▷ player 𝑘 chooses to do 𝑥𝑘, receives 𝑢𝑘(𝑥𝑘, 𝑥−𝑘 , 𝑑)

44

Nash equilibrium

▷ 𝐾 self-interested players

▷ player 𝑘 chooses to do 𝑥𝑘, receives 𝑢𝑘(𝑥𝑘, 𝑥−𝑘 , 𝑑)

▷ NE is (𝑥1, … , 𝑥𝐾) if no player can improve their
payoff by unilaterally deviating

45

Nash equilibrium

▷ 𝐾 self-interested players

▷ player 𝑘 chooses to do 𝑥𝑘, receives 𝑢𝑘(𝑥𝑘, 𝑥−𝑘 , 𝑑)

▷ NE is (𝑥1, … , 𝑥𝐾) if no player can improve their
payoff by unilaterally deviating

▷ Define game gradient

▷ Define action set or

46

NE as a Fixed Point

▷ Using operator splitting, an NE 𝑥⋆ satisfies

or

(Davis-Yin splitting)

47

Observe many 𝑑, learn 𝐹Θ, thus 𝑥⋆

Rock, paper, scissors

▷ 𝑑 is payoff matrix

▷ 𝐹Θ: 2-layer N-FPN, 500
parameters

▷ Train 𝐹Θ
▷ Let one player (use learned
𝐹Θ to take actions) to play
with another with true 𝐹Θ

48

Contextual traffic routing

▷ 𝑑 represents weather, roadwork, etc., affects speed

▷ Each driver is selfish, minimizing commute time

▷ NE can be analytically computed

▷ Instead, we train a 3 layer fully connected N-FPN to
predict NE given the road network, drivers, 𝑑

▷ 𝐶 = (network constraints) ∩ (nonnegativity)

▷ Compare to prediction to analytic solution

49

Real city network tests

50

Summary

▷ Learning to optimize a new paradigm of optimization

▷ Useful at
○ Use data to improve modeling and method
○ Use data to find an optimization short cut

▷ Fixed-point network
○ Yields a consistent improvement in performance

over finite-depth networks
○ Is surprisingly easy to train, end-to-end

51

Co-authors, paper, and code

▷ Learning to Optimize: A Primer and A Benchmark. arXiv:2103.12828 by
Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang (UT Austin),
Jialin Liu (Alibaba US), Howard Heaton (UCLA)

▷ Fixed-point network: Howard Heaton (UCLA), Qiuwei Li (UCLA), Daniel
McKenzie (UCLA), Samy Wu Fung (now at Colorado Sch of Mines)

▷ Codes
○ https://github.com/VITA-Group/Open-L2O
○ https://github.com/howardheaton/fixed_point_networks
○ https://github.com/howardheaton/nash_fixed_point_networks

52

https://arxiv.org/abs/2103.12828
https://github.com/VITA-Group/Open-L2O
https://github.com/howardheaton/nash_fixed_point_networks
https://github.com/howardheaton/nash_fixed_point_networks

Thanks!
Any questions?

53

