Learning to Optimize

Wotao Yin

Alibaba Damo Academy

CUHK MATH-IMS Applied Mathematics Colloquium Series

1. Background

Machine learning and Optimization

Answers are given as existing data

ML learns from data to give answers in the future

Induction

No answer is given; but we know how to evaluate how answers are.

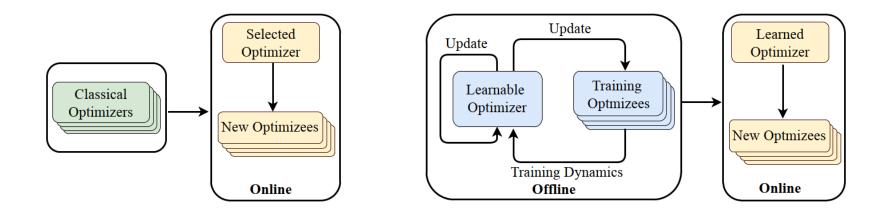
OPT finds answers with best evaluations

Prescription

L2O uses experience to "optimize faster" or "generate better solutions" in the future.

Classic optimization

Learning-to-optimize



When to consider L2O

- Having many samples of good solutions
- But it is hard to write a good analytic model (e.g., inverse problems)

L2O finds better solutions by **learning a model or method**.

- Having many samples of good solutions
- Solving similar optimization problems repeatedly

L2O finds similar solutions by taking a **"fast shortcut"**.

Basic formulation

Consider $\min_{\mathbf{x}} f(\mathbf{x})$

 \triangleright Consider GD iteration: $\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha \nabla f(\mathbf{x}_t)$

Basic formulation

Consider $\min_{\mathbf{x}} f(\mathbf{x})$

- \triangleright Consider GD iteration: $\mathbf{x}_{t+1} = \mathbf{x}_t \alpha \nabla f(\mathbf{x}_t)$
- ▷ Introduce free parameters
 - \circ Let \mathbf{z}_t represent all the iterates and gradients till t
 - Use $\mathbf{x}_{t+1} = \mathbf{x}_t g(\mathbf{z}_t, \phi)$ where g is parameterized by ϕ

Basic formulation

Consider $\min_{\mathbf{x}} f(\mathbf{x})$

- \triangleright Consider GD iteration: $\mathbf{x}_{t+1} = \mathbf{x}_t \alpha \nabla f(\mathbf{x}_t)$
- ▷ Introduce free parameters
 - \circ Let \mathbf{z}_t represent all the iterates and gradients till t
 - \circ Use $\mathbf{x}_{t+1} = \mathbf{x}_t g(\mathbf{z}_t, \phi)$ where g is parameterized by ϕ

▷ L2O formulation (Andrychowicz et al'NIPS16):

$$\min_{\phi} \mathbb{E}_{f \in \mathcal{T}} \left[\sum_{t=1}^{T} w_t f(\mathbf{x}_t) \right]$$
$$\mathbf{x}_{t+1} = \mathbf{x}_t - g(\mathbf{z}_t, \phi), \ t = 1, \dots, T -$$

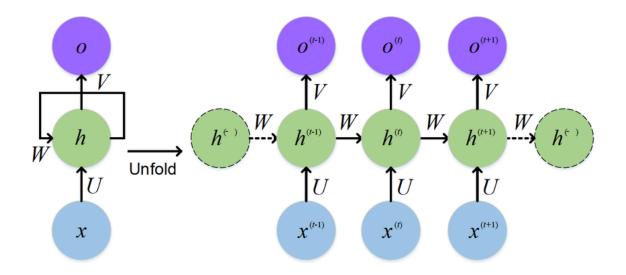
model-based vs model-free

- g has a form of an existing method or uses it as a starting point
- L2O searches for the best values of some parameters
- You may combine this L2O with classic methods in various ways

- g is based on universal approximators, e.g., multi-layer neural networks or recurrent neural networks.
- L2O is set to discover completely new update rules without referring to any existing updates (other than being iterative)

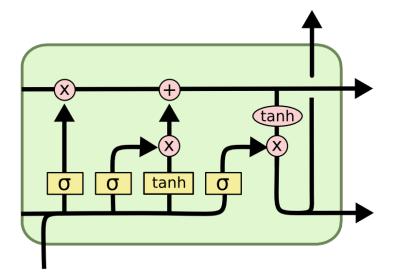
based on RNNs, especially LSTMs

RNN and unfolding



Wichrowska et al'17; Metz et al'ICML19; Li-Malik'ICLR17; Bello et al'ICC17; Jiang et al'18;

Many model-free L2O uses LSTM



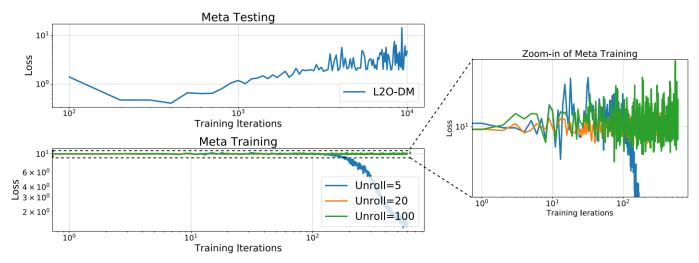
Andrychowicz et al'NIPS16; Chen et al'ICML17; Lv-Jiang-Li'17; Cao et al'NeurIPS19; Xiong-Hsieh'20

Optimizer Architecture	Input Feature	Meta Training Objective	Additional Technique	Evaluation Metric
LSTM	Gradient	Meta Loss	Transform input gradient ∇ into $\log(\nabla)$ and $\operatorname{sign}(\nabla)$	Training Loss
LSTM	Objective Value	Objective Value	N/A	Objective Value
LSTM	Gradient	Meta Loss	Random Scaling Combination with Convex Functions	Training Loss
Hierarchical RNNs	Scaled averaged gradients, relative log gradient magnitudes, relative log learning rate	Log Meta Loss	Gradient History Attention Nesterov Momentum	Training Loss
MLP	Gradient	Meta Loss	Unbiased Gradient Estimators	Training Loss Testing Loss
RNN Controller	Loss, Gradient	Meta Loss	Coordinate Groups	Training Loss
Searched Mathematical Rule by Primitive Functions	Scaled averaged gradients	Meta Loss	N/A	Testing Accuracy
Multiple LSTMs	Gradient, momentum, particle's velocity and attraction	Meta Loss and Entropy Regularizer	Sample- and Feature- Attention	Training Loss
RNN	Input Images, Input Gradient	Meta Loss	N/A	Standard and Robust Test Accuracies
LSTM	Input Gradient	Meta Loss	N/A	Training Loss and Robust Test Accuracy

Challenges: network depth

Deep networks have high memory costs

Shallow networks cannot run more iterations



3. Model-Based L20

Plug-n-Play, Unrolling, Safeguarding, etc.

Unrolling by example: LASSO

LASSO model:

$$x^{\text{lasso}} \leftarrow \min_{x} \frac{1}{2} \|b - Ax\|_{2}^{2} + \lambda \|x\|_{2}^{2}$$

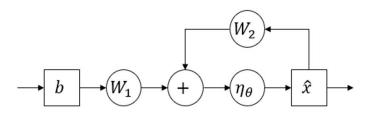
Iterative Shrinkage and Thresholding Algorithm (ISTA):

$$x^{(k+1)} = \eta_{\frac{\lambda}{L}} \left(x^{(k)} + \frac{1}{L} A^T (b - A x^{(k)}) \right)$$

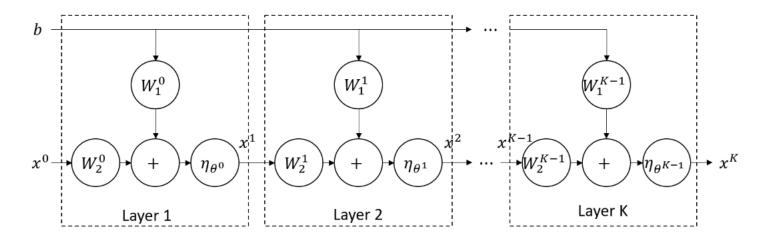
Rewrite ISTA as

$$x^{(k+1)} = \eta_{\theta}(W_1b + W_2x^{(k)}),$$

where $W_1 = \frac{1}{L}A^T, W_2 = I_n - \frac{1}{L}A^TA$ and $\theta = \frac{\lambda}{L}$.



Unrolling



- Limit to K iterations, trained end-to-end trained
- Okay to reduce parameters without performance loss (Chen et. al. NeurIPS'18 & Liu et. al. ICLR'19)
- Popular and successful in inverse problems, PDEs, and graphical models

- Unroll length: more layers yield better performance but are difficult to train.
- Capacity: only provably better in very narrow cases (Liu et al'ICLR18).
- ▷ <u>Trainability:</u>lacks performance guarantee.
- ▷ <u>Generalization:</u> when and what if L2O fails?

Safe-guarding

(Heaton et al.20) L2O convergence can be ensured by incorporating an "energy" E(L2D update 2^{k} ; $f \in E^{t}(2^{k}) \leq E^{t}(x^{k})$

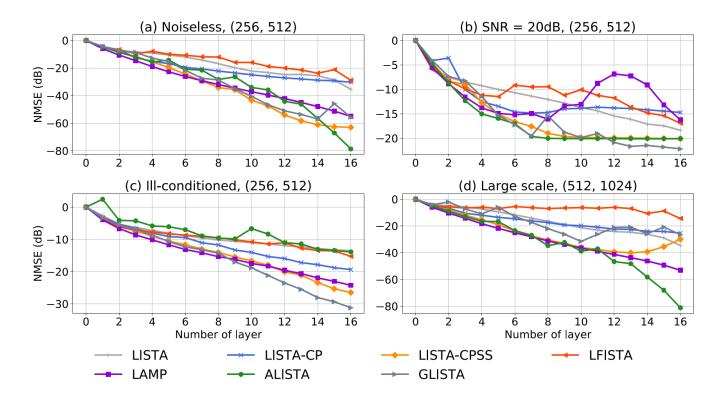
When L2O fails to decrease the energy, the classic update *T* will take over in that iteration

Test: Recover a sparse vector from noisy measurements $b_q = Ax_q^* + \varepsilon_q$

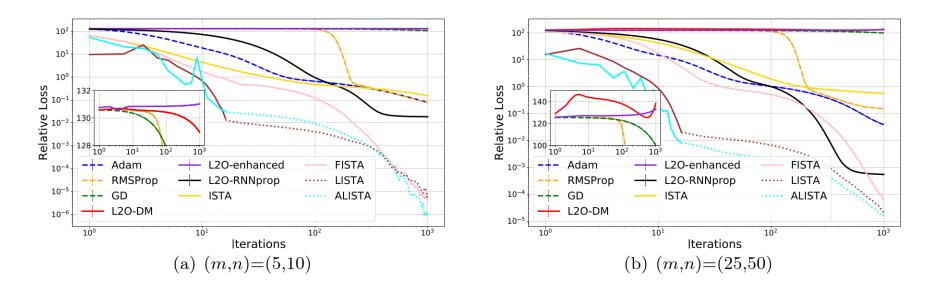
▷ Fix *A*; vary sparse vectors and noise

Training loss is squared-L2 to the true signal
 Unroll to 16 layers

Learn to recover the signal



Learn to solve the LASSO model (with safeguards)



Plug-and-Play: background

▷ Consider

$$\min_{x \in \mathbb{R}^d} f(x) + \gamma g(x)$$
▷ ADMM:

$$x^{k+1} = \operatorname{Prox}_{\sigma^2 g}(y^k - u^k)$$

$$y^{k+1} = \operatorname{Prox}_{\alpha f}(x^{k+1} + u^k)$$

$$u^{k+1} = u^k + x^{k+1} - y^{k+1}.$$

▷ Interpretation in imaging

- Step 1: noisy image \rightarrow less noisy image
- \circ Step 2: less consistent \rightarrow more consistent with data

Non-prox denoisers

- State-of-the-art denoisers are prox of certain functions:
 NLM, BM3D, CNN
- ▷ However, still have the interpretation
 - H_{σ} : noisy image \mapsto less noisy image
- ▷ Q: how to integrate into iterations like ADMM?

Plug-and-Play

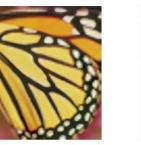
▷ (Venkatakrishnan et al'GlobalSIP13) PnP ADMM:

▷ Works surprisingly well!

Example: Super resolution

Low resolution input Other method

Other method



Other method

Other method Other method **PnP-ADMM with BM3D** (Chen-Wang-Elgendy'17)

Good:

- Infinite depth (unrolling length is not an issue)
- ▷ Has convergence guarantees (Ryu et al'ICML19) if
 - \circ *I H*_{σ} is Lipschitz
 - \circ f is strongly convex
- Limited:
 - ▷ Denoise H_{σ} is pre-trained before plugged in (Training is not end-to-end)
 - Good performance cannot be explained

Deep Equilibrium (Fixed Point Network)

- (Bai et al'NeurIPS19) Instead of finite iterations, use infinite iterations (in theory) to output a fixed point
- Related to (Chen et al'NeurIPS18) Neural
 ODE, based on black-box ODE solver
- We can modify (i.e., train) the iterator or
 ODE model in an end-to-end manner

Example

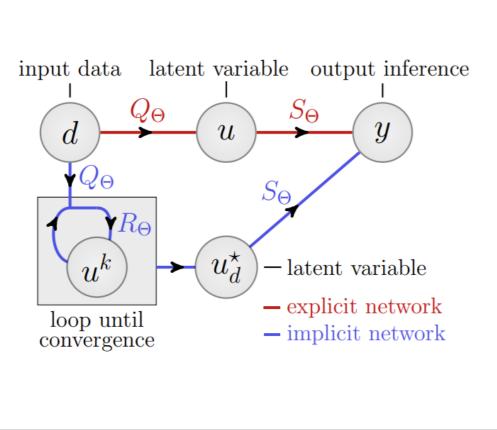
• Explicit network

 $\begin{aligned} u &= Q_{\Theta}(d) \\ y &= S_{\Theta}(u) \end{aligned}$

• Fixed-point network

 $u = Q_{\Theta}(d)$ solve $u^* = R_{\Theta}(u^*; u)$ $y = S_{\Theta}(u^*)$

(Can replace u^* by an approximate \tilde{u}) (Heaton et al'21, Gilton et al'21)



Back propagation

▷ Compute gradients w.r.t. parameters Θ
 ▷ Define T_Θ(u; d) ≜ R_Θ(u, Q_Θ(d)) and ũ_d = T_Θ(ũ_d; d)

Back propagation

- ▷ Compute gradients w.r.t. parameters Θ ▷ Define $T_{\alpha}(w; d) \triangleq B_{\alpha}(w; Q_{\alpha}(d))$ and $\tilde{w}_{\alpha} = T_{\alpha}(\tilde{w})$
- ▷ Define T_Θ(u; d) ≜ R_Θ(u, Q_Θ(d)) and ũ_d = T_Θ(ũ_d; d)
 ▷ J_Θ(u; d) ≜ I dT_Θ/du (u; d) exists a.e. if T_Θ is
 Lipschitz and T_Θ is a contraction for each d

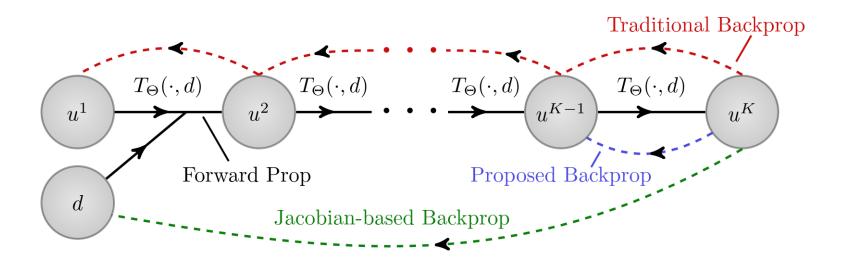
Back propagation

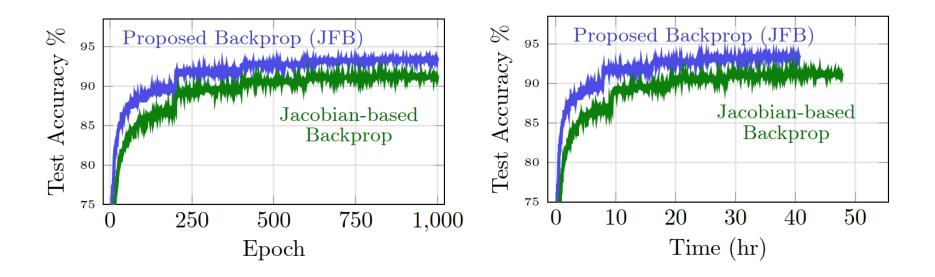
- Compute gradients w.r.t. parameters Θ
- ▷ Define $T_{\Theta}(u;d) \triangleq R_{\Theta}(u,Q_{\Theta}(d))$ and $\tilde{u}_d = T_{\Theta}(\tilde{u}_d;d)$ ▷ $\mathcal{J}_{\Theta}(u;d) \triangleq I - \frac{dT_{\Theta}}{du}(u;d)$ exists a.e. if T_{Θ} is Lipschitz and T_{Θ} is a contraction for each d
- ▷ Despite of infinite depth, backprop through T_{Θ} has finite computation and storage!

$$\frac{\mathrm{d}\tilde{u}_d}{\mathrm{d}\Theta} = \frac{\partial T_\Theta}{\partial u} \frac{\mathrm{d}\tilde{u}_d}{\mathrm{d}\Theta} + \frac{\partial T_\Theta}{\partial \Theta} \implies \frac{\mathrm{d}\tilde{u}_d}{\mathrm{d}\Theta} = \mathcal{J}_\Theta^{-1} \cdot \frac{\partial T_\Theta}{\partial \Theta}$$

Jacobian-free back propagation

- ▷ (Heaton et al'21) while forward propagation uses a fixed point, it suffices to use T_{Θ} during back prop. No Jacobian, no matrix inverse!
- ▷ Significance: huge speedup, allows complicated T_{Θ} (e.g., from operator splitting)
- Has a proof under Lipschitz and contraction conditions





MNIST				
Method	Model size	Acc.		
Explicit	35K	99.3%		
Neural ODE [†]	84K	96.4%		
Aug. Neural ODE [†]	84K	98.2%		
MON [‡]	84K	99.2%		
FPN	35K	99.4 %		

SVHN

Method	Model size	Acc.
Explicit (ResNet)	164K	93.7%
Neural ODE [†]	172K	81.0%
Aug. Neural ODE [†]	172K	83.5%
MON (Multi-tier lg) [‡]	170K	92.3%
FPN (ours)	164K	94.1%

CIFAR-10

Method	Model size	Acc.
Explicit	164K	80.0%
Neural ODE [†]	172K	53.7%
Aug. Neural ODE [†]	172K	60.6%
MON (Single conv) [‡]	172K	74.1%
FPN (ours)	164K	80.5%
Explicit (ResNet-56)*	0.85M	93.0%
MON (Multi-tier lg) ^{‡*}	1.01M	89.7%
FPN (ours)*	0.84M	93.7%

Application Learn to Predict a Game

Contextual Game

 d represents the game contextual information, known to all the players

▷ We wish to predict game outcomes knowing only *d*

▷ Also train a player to play the game competitively

Nash equilibrium

- ▷ *K* self-interested players
- ▷ player k chooses to do x_k , receives $u_k(x_k, x_{-k}, d)$

Nash equilibrium

- ▷ *K* self-interested players
- ▷ player k chooses to do x_k , receives $u_k(x_k, x_{-k}, d)$
- ▷ NE is $(x_1, ..., x_K)$ if no player can improve their payoff by unilaterally deviating

Nash equilibrium

- ▷ *K* self-interested players
- ▷ player k chooses to do x_k , receives $u_k(x_k, x_{-k}, d)$
- ▷ NE is $(x_1, ..., x_K)$ if no player can improve their payoff by unilaterally deviating
- \triangleright Define game gradient $F \triangleq \left[\nabla_{x_1} u_1^\top \cdots \nabla_{x_K} u_K^\top \right]^\top$
- $\triangleright \quad \text{Define action set } \mathcal{C} \text{ or } \mathcal{C} = \mathcal{C}^1 \cap \mathcal{C}^2$

NE as a Fixed Point

▷ Using operator splitting, an NE x^* satisfies $x_d^* = P_C (x_d^* - F(x_d^*; d))$

or

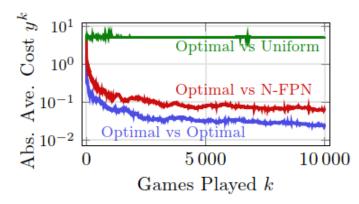
$$\begin{aligned} x_d^{\star} &= P_{\mathcal{C}^1}(z_d^{\star}) \text{ where } z_d^{\star} = T(z_d^{\star}; d) \text{ and} \\ T(x; d) &\triangleq x - P_{\mathcal{C}^1}(x) + P_{\mathcal{C}^2} \left(2P_{\mathcal{C}^1}(x) - x - F(P_{\mathcal{C}^1}(x); d)\right) \right) \end{aligned}$$
(Davis-Yin splitting)

Observe many d, learn F_{Θ} , thus x^*

Rock, paper, scissors

- \triangleright d is payoff matrix
- \triangleright F_{Θ} : 2-layer N-FPN, 500 parameters
- \triangleright Train F_{Θ}
- ▷ Let one player (use learned F_{Θ} to take actions) to play with another with true F_{Θ}

	R	Р	S
R	0	$-\langle w^1,d\rangle$	$\langle w^2, d \rangle$
Р	$\langle w^1, d angle$	0	$-\langle w^3,d\rangle$
S	$-\langle w^2,d\rangle$	$\left\langle w^{3},d ight angle$	0



Contextual traffic routing

- ▷ *d* represents weather, roadwork, etc., affects speed
- ▷ Each driver is selfish, minimizing commute time
- NE can be analytically computed
- Instead, we train a 3 layer fully connected N-FPN to predict NE given the road network, drivers, d
- \triangleright C = (network constraints) \cap (nonnegativity)
- Compare to prediction to analytic solution

Real city network tests

$$\mathsf{TRAFIX}(x_d^{\circ}, x_d^{\star}) \triangleq \frac{\#\left\{e \in E : |x_{d,e}^{\circ} - x_{d,e}^{\star}| < \varepsilon |x_{d,e}^{\star}|\right\}}{|E|}$$

dataset	edges/nodes	OD-pairs	TRAFIX score
Sioux Falls	76/24	528	0.94
Eastern Mass.	258/74	1113	0.97
Berlin-Friedrichshain	523/224	506	0.97
Berlin-Tiergarten	766/361	644	0.95
Anaheim	914/416	1406	0.95

Summary

- ▷ Learning to optimize a new paradigm of optimization
- ▷ Useful at
 - Use data to improve modeling and method
 - Use data to find an optimization short cut
- ▷ Fixed-point network
 - Yields a consistent improvement in performance over finite-depth networks
 - Is surprisingly easy to train, end-to-end

Co-authors, paper, and code

- Learning to Optimize: A Primer and A Benchmark. <u>arXiv:2103.12828</u> by Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang (UT Austin), Jialin Liu (Alibaba US), Howard Heaton (UCLA)
- Fixed-point network: Howard Heaton (UCLA), Qiuwei Li (UCLA), Daniel McKenzie (UCLA), Samy Wu Fung (now at Colorado Sch of Mines)
- \triangleright Codes
 - O <u>https://github.com/VITA-Group/Open-L2O</u>
 - O <u>https://github.com/howardheaton/fixed_point_networks</u>
 - O <u>https://github.com/howardheaton/nash_fixed_point_networks</u>

Thanks! Any questions?