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Background
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Machine learning  and  Optimization

Answers are given as 
existing data

ML learns from data to 
give answers in the future

No answer is given; but 
we know how to evaluate 
how answers are.

OPT finds answers with 
best evaluations
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L2O uses experience to “optimize faster” or “generate 
better solutions” in the future.

Induction Prescription
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Classic optimization Learning-to-optimize



When to consider L2O

▷ Having many samples of 
good solutions

▷ But it is hard to write a 
good analytic model 
(e.g., inverse problems)

L2O finds better solutions 
by learning a model or 
method.

▷ Having many samples of 
good solutions

▷ Solving similar 
optimization problems 
repeatedly

L2O finds similar solutions by 
taking a “fast shortcut”.
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Basic formulation

Consider

▷ Consider GD iteration:
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Basic formulation

Consider

▷ Consider GD iteration:

▷ Introduce free parameters
○ Let        represent all the iterates and gradients till 𝑡
○ Use                                                    where      is parameterized by 
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Basic formulation

Consider

▷ Consider GD iteration:

▷ Introduce free parameters
○ Let        represent all the iterates and gradients till 𝑡
○ Use                                                    where      is parameterized by 

▷ L2O formulation (Andrychowicz et al’NIPS16): 
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model-based  vs   model-free
▷ 𝑔 has a form of an 

existing method or 
uses it as a starting 
point

▷ L2O searches for the 
best values of some 
parameters

▷ You may combine this 
L2O with classic 
methods in various 
ways

▷ 𝑔 is based on universal 
approximators, e.g., 
multi-layer neural 
networks or recurrent 
neural networks.

▷ L2O is set to discover 
completely new update 
rules without referring 
to any existing updates 
(other than being 
iterative)
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2.
Model-Free L2O
based on RNNs, especially LSTMs
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RNN and unfolding
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Wichrowska et al’17; Metz et al’ICML19; Li-Malik’ICLR17; Bello et al’ICC17; Jiang et al’18;



Many model-free L2O uses LSTM
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Andrychowicz et al’NIPS16; Chen et al’ICML17; Lv-Jiang-Li’17; Cao et al’NeurIPS19; Xiong-Hsieh’20
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Challenges: network depth

▷ Deep networks have high memory costs

▷ Shallow networks cannot run more iterations
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3.
Model-Based L2O

Plug-n-Play, Unrolling, Safeguarding, etc.
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Unrolling by example: LASSO
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Unrolling

▷ Limit to K iterations, trained end-to-end trained

▷ Okay to reduce parameters without performance loss (Chen et. al. NeurIPS’18 & Liu
et. al. ICLR’19)

▷ Popular and successful in inverse problems, PDEs, and graphical models
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Challenges

▷ Unroll length: more layers yield better performance but are 
difficult to train.

▷ Capacity: only provably better in very narrow cases (Liu et 
al’ICLR18).

▷ Trainability: lacks performance guarantee.

▷ Generalization: when and what if L2O fails?
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Safe-guarding

(Heaton et al.20) L2O convergence can be ensured 
by incorporating an “energy” E

When L2O fails to decrease the energy, the classic 
update 𝑇 will take over in that iteration
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Test: Recover a sparse vector 
from noisy measurements

▷ Fix 𝐴; vary sparse vectors and noise

▷ Training loss is squared-L2 to the true signal

▷ Unroll to 16 layers
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Learn to recover the signal
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Learn to solve the LASSO model
(with safeguards)
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Plug-and-Play: background

▷ Consider

▷ ADMM:

▷ Interpretation in imaging
○ Step 1: noisy image → less noisy image

○ Step 2: less consistent →more consistent with data
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Non-prox denoisers

▷ State-of-the-art denoisers are prox of certain functions:
○ NLM, BM3D, CNN

▷ However, still have the interpretation

▷ Q: how to integrate into iterations like ADMM?
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Plug-and-Play

▷ (Venkatakrishnan et al’GlobalSIP13) PnP ADMM:

▷ Works surprisingly well!
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Example: Super resolution

29(Chen-Wang-Elgendy’17)



Good:
▷ Infinite depth (unrolling length is not an issue)

▷ Has convergence guarantees (Ryu et al’ICML19) if
○ 𝐼 − 𝐻𝜎 is Lipschitz
○ 𝑓 is strongly convex

▷ Denoise 𝐻𝜎 is pre-trained before plugged in 
(Training is not end-to-end)

▷ Good performance cannot be explained
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Limited:



Deep Equilibrium (Fixed Point Network)

▷ (Bai et al’NeurIPS19) Instead of finite 
iterations, use infinite iterations (in theory) 
to output a fixed point

▷ Related to (Chen et al’NeurIPS18) Neural 
ODE, based on black-box ODE solver

▷ We can modify (i.e., train) the iterator or 
ODE model in an end-to-end manner
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Example

• Explicit network

𝑢 = 𝑄Θ 𝑑
𝑦 = 𝑆Θ(𝑢)

• Fixed-point network

𝑢 = 𝑄Θ 𝑑

solve 𝑢⋆ = 𝑅Θ 𝑢⋆; 𝑢
𝑦 = 𝑆Θ 𝑢⋆

(Can replace 𝑢⋆ by an 
approximate 𝑢)

(Heaton et al’21, Gilton et al’21)
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Back propagation

▷ Compute gradients w.r.t. parameters Θ

▷ Define                                                 and 
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Back propagation

▷ Compute gradients w.r.t. parameters Θ

▷ Define                                                 and 

▷ exists a.e. if 𝑇Θ is 
Lipschitz and 𝑇Θ is a contraction for each 𝑑
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Back propagation

▷ Compute gradients w.r.t. parameters Θ

▷ Define                                                 and 

▷ exists a.e. if 𝑇Θ is 
Lipschitz and 𝑇Θ is a contraction for each 𝑑

▷ Despite of infinite depth, backprop through 
𝑇Θ has finite computation and storage!
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Jacobian-free back propagation

▷ (Heaton et al’21) while forward propagation 
uses a fixed point, it suffices to use 𝑇Θ during 
back prop. No Jacobian, no matrix inverse!

▷ Significance: huge speedup, allows complicated 
𝑇Θ (e.g., from operator splitting)

▷ Has a proof under Lipschitz and contraction 
conditions
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4.
Application

Learn to Predict a Game
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Contextual Game

▷ 𝑑 represents the game contextual information, 
known to all the players

▷ We wish to predict game outcomes knowing only 𝑑

▷ Also train a player to play the game competitively
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Nash equilibrium

▷ 𝐾 self-interested players

▷ player 𝑘 chooses to do 𝑥𝑘, receives 𝑢𝑘(𝑥𝑘, 𝑥−𝑘 , 𝑑)
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Nash equilibrium

▷ 𝐾 self-interested players

▷ player 𝑘 chooses to do 𝑥𝑘, receives 𝑢𝑘(𝑥𝑘, 𝑥−𝑘 , 𝑑)

▷ NE is (𝑥1, … , 𝑥𝐾) if no player can improve their 
payoff by unilaterally deviating
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Nash equilibrium

▷ 𝐾 self-interested players

▷ player 𝑘 chooses to do 𝑥𝑘, receives 𝑢𝑘(𝑥𝑘, 𝑥−𝑘 , 𝑑)

▷ NE is (𝑥1, … , 𝑥𝐾) if no player can improve their 
payoff by unilaterally deviating

▷ Define game gradient

▷ Define action set      or
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NE as a Fixed Point

▷ Using operator splitting, an NE 𝑥⋆ satisfies

or

(Davis-Yin splitting)
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Observe many 𝑑, learn 𝐹Θ, thus 𝑥⋆

Rock, paper, scissors

▷ 𝑑 is payoff matrix

▷ 𝐹Θ: 2-layer N-FPN, 500 
parameters

▷ Train 𝐹Θ
▷ Let one player (use learned 
𝐹Θ to take actions) to play 
with another with true 𝐹Θ
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Contextual traffic routing

▷ 𝑑 represents weather, roadwork, etc., affects speed

▷ Each driver is selfish, minimizing commute time

▷ NE can be analytically computed

▷ Instead, we train a 3 layer fully connected N-FPN to 
predict NE given the road network, drivers, 𝑑

▷ 𝐶 = (network constraints) ∩ (nonnegativity)

▷ Compare to prediction to analytic solution
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Real city network tests
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Summary

▷ Learning to optimize a new paradigm of optimization

▷ Useful at
○ Use data to improve modeling and method
○ Use data to find an optimization short cut 

▷ Fixed-point network
○ Yields a consistent improvement in performance 

over finite-depth networks
○ Is surprisingly easy to train, end-to-end
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Co-authors, paper, and code

▷ Learning to Optimize: A Primer and A Benchmark. arXiv:2103.12828 by 
Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang (UT Austin), 
Jialin Liu (Alibaba US), Howard Heaton (UCLA)

▷ Fixed-point network: Howard Heaton (UCLA), Qiuwei Li (UCLA), Daniel 
McKenzie (UCLA), Samy Wu Fung (now at Colorado Sch of Mines)

▷ Codes
○ https://github.com/VITA-Group/Open-L2O
○ https://github.com/howardheaton/fixed_point_networks
○ https://github.com/howardheaton/nash_fixed_point_networks
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https://arxiv.org/abs/2103.12828
https://github.com/VITA-Group/Open-L2O
https://github.com/howardheaton/nash_fixed_point_networks
https://github.com/howardheaton/nash_fixed_point_networks


Thanks!
Any questions?
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