Learning to Optimize

Wotao Yin

Alibaba Damo Academy

CUHK MATH-IMS Applied Mathematics Colloquium Series

1.
Background

Machine learning and Optimization

Answers are given as No answer is given; but
existing data we know how to evaluate
how answers are.

ML learns from data to
give answers in the future OPT finds answers with
best evaluations

B

L20 uses experience to “optimize faster” or “generate
better solutions” in the future.

Classic optimization

Classical
Optimizers II

\ 4

((Selected)
Optimizer

‘ New Optimizeest

=

'\ Online

Learning-to-optimize

Update

Update [

!

\

Training
Optmizees

Learnable
Optimizer

{

/

Training Dynamics

_ Offline

(r)

Learned
Optimizer

/

\ 4

I

i

New Optmizees II

\ Online J

When to consider L20O

> Having many samples of
good solutions

> Butitis hard to write a
good analytic model
(e.g., inverse problems)

L20 finds better solutions
by learning a model or
method.

> Having many samples of
good solutions

> Solving similar
optimization problems
repeatedly

L20 finds similar solutions by
taking a “fast shortcut”.

Basic formulation

Consider miny f(x)
> Consider GD iteration: X¢+1 = Xt — aV f(x¢)

Consider miny f(x)
Consider GD iteration: X;+1 = X — aV f(x¢)

Introduce free parameters
O Let z; represent all the iterates and gradients till ¢
O Use X¢41 = Xt—g(zi, gb) where g is parameterized by ¢

Consider miny f(x)
Consider GD iteration: X;+1 = X — aV f(x¢)

Introduce free parameters
O Let z; represent all the iterates and gradients till ¢
O Use X¢41 = Xt—g(zi, gb) where g is parameterized by ¢

L20 formulation (Andrychowicz et al’'NIPS16):

T
> ’wtf(Xt)]

t=1

mqgn Krer

Xep1 =Xt — (2, 0), t=1,..., T —1

model-based vs model-free

> g hasaformofan
existing method or
uses it as a starting
point

> L20O searches for the
best values of some
parameters

> You may combine this
L20O with classic
methods in various
ways

> g is based on universal
approximators, e.g.,
multi-layer neural
networks or recurrent
neural networks.

> L20is set todiscover

completely new update
rules without referring
to any existing updates
(other than being
iterative)

10

2.
Model-Free | 20

based on RNNs, especially LSTMs

RNN and unfolding

Unfold

Wichrowska et al’17; Metz et al'lCML19; Li-Malik’ICLR17; Bello et al'lCC17; Jiang et al'18;

12

)-b

Andrychowicz et a’NIPS16; Chen et alICML17; Lv-Jiang-Li'17; Cao et al’NeurlPS19; Xiong-Hsieh’20

Optimizer Architecture

Input Feature

| Meta Training Objective ‘

Additional Technique

Evaluation Metric

Transform input gradient V

LSTM Gradient Meta Loss into log(V) and sign(V) Training Loss
LSTM | Objective Value | Objective Value ‘ N/A | Objective Value
LSTM Gradient Meta Loss Random Scaling Training Loss

Combination with Convex Functions

Hierarchical RNNs

Scaled averaged gradients,
relative log gradient magnitudes,
relative log learning rate

Log Meta Loss

Gradient History Attention
Nesterov Momentum

Training Loss

Training Loss

MLP Gradient Meta Loss Unbiased Gradient Estimators .
Testing Loss
RNN Controller | Loss, Gradient | Meta Loss ‘ Coordinate Groups | Training Loss
Searched Mathematical Rule Scaled averaged gradients Meta Loss N/A Testing Accuracy

by Primitive Functions

Multiple LSTMs

Gradient, momentum,
particle’s velocity and attraction

Meta Loss and
Entropy Regularizer

Sample- and Feature- Attention

Training Loss

RNN

Input Images, Input Gradient

Meta Loss

N/A

Standard and Robust
Test Accuracies

LSTM

Input Gradient

Meta Loss

N/A

Training Loss and
Robust Test Accuracy

Challenges: network depth

> Deep networks have high memory costs

> Shallow networks cannot run more iterations

Loss

Loss
NOwWweE O

10t

10°

10!

x 107

% 10°
x 107

% 10°

Meta Testing

— L20-DM

102 10° 10*
Training Iterations

Meta Training

—— Unroll=5
—— Unroll=20

—— Unroll=100

10° 10* 102
Training Iterations

‘.

. n

. 7] 1
210

Zoom-in of Meta Training

10° 10* 102
rai ions

16

3.
Model-Based |20

Plug-n-Play, Unrolling, Safeguarding, etc.

Unrolling by example: LASSO

LASSO model:

£'*%%° < minimize %Hb — Az|3 + |z|1
T

Iterative Shrinkage and Thresholding Algorithm (ISTA):

Rewrite ISTA as
2+ ne(Wib + Wzm(k)),
where Wy = AT Wy =1, — tATAand 6= 2

"

)
&)

<
<+

l

—1b ()

19

Unrolling

> Limit to K iterations, trained end-to-end trained
>

Okay to reduce parameters without performance loss (Chen et. al. NeurIPS’18 & Liu
et.al. ICLR’19)
> Popular and successful in inverse problems, PDEs, and graphical models

20

Challenges

> Unroll length: more layers yield better performance but are
difficult to train.

> Capacity: only provably better in very narrow cases (Liu et
al'lCLR18).

> Trainability: lacks performance guarantee.

> Generalization: when and what if L20O fails?

21

Safe-guarding

(Heaton et al.20) L20 convergence can be ensured
by incorporating an “energy” E

. 120 updete 2% 'K E"(?;“\ & B (&)
%
o { Classic uy Leke ‘T(.*% otheqose

When L20 fails to decrease the energy, the classic
update T will take over in that iteration

22

Test: Recover a sparse vector
from noisy measurements b, = Azj + ¢,

> Fix A; vary sparse vectors and noise
> Training loss is squared-L2 to the true signal
> Unroll to 16 layers

23

Learn to recover the signal

NMSE (dB)
b Lok
o o o

|
0
o

NMSE (dB)
L
° o

|
N
o

|
W
o

(a) Noiseless, (256, 512)
I

(b) SNR = 20dB, (256, 512)

0
= =N - A
ST S Ll
I —t—
~15
: —
-20 ——

2 4 6 8 10 12 1
(c) lll-conditioned, (256, 512)

4 16

0 2 4 6

(d) Large scale, (512, 1024)
I I

8 10 12 14 16

0 1

L o \l——"\.
—20 ‘l\' .
¥ >
‘\x“ —40 .\.\.—

\\. —60

>

T | 80

2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Number of layer

—— LISTA —— LISTA-CP

—=— |AMP —e— ALISTA

Number of layer

—o— LISTA-CPSS
—— GLISTA

—— LFISTA

24

1074

10t~

e v
| [=]
- =]

Relative Loss
3

= =
o o
L 4

-
o
A

-
1)
&

Learn to solve the LASSO model
(with safeguards)

128

: \
1100 10! 102

10

~—+- Adam —— L20-enhanced FISTA
-+~ RMSProp —}— L20-RNNprop - LISTA
" -+- GD ISTA ALISTA
—— 20DM -
160 TR 10 16
Iterations

(a) (m,n)=(5,10)

o
0

Relative Loss

= =
o o
L 4

—
o
b

10[?1:00 102 1&3

-4+- Adam —— L20-enhanced
-+~ RMSProp —}— L20-RNNprop
-4- GD ISTA

—— L20-DM

107 T

|terations

(b) (m,n)=(25,50)

25

Plug-and-Play: background

> Consider
minimize f(x) + vg(z)
rER4
> ADMM:
aFtl = Proxazg(yk — k)

y" 1 = Prox, s (2" 4+ u¥)

S

u Y

> Interpretation in imaging
O Step 1: noisy image = less noisy image
O Step 2: less consistent 2 more consistent with data

26

Non-prox denoisers

> State-of-the-art denoisers are prox of certain functions:
o NLM, BM3D,CNN

> However, still have the interpretation

H, : noisy image +— less noisy image

> Q:how tointegrate into iterations like ADMM?

27

Plug-and-Play

> (Venkatakrishnan et al'GlobalSIP13) PnP ADMM:;

2t = Prox,z, (y* — u) " = Hy(y" —u®)
y" T = Prox, s (" 4+ u*) , y" T = Prox, (2" 4)
R WFHT — gk gkl R

> Works surprisingly well!

28

Example: Super resolution

Other method Other method Other method PnP-ADMM with BM3D
(Chen-Wang-Elgendy’17) 29

Good:

> Infinite depth (unrolling length is not an issue)

> Has convergence guarantees (Ryu et al'lCML19) if
o I — H, is Lipschitz
o f isstrongly convex

Limited:;

> Denoise H, is pre-trained before plugged in
(Training is not end-to-end)

> Good performance cannot be explained

32

Deep Equilibrium (Fixed Point Network)

> (Bai et al’NeurlPS19) Instead of finite
iterations, use infinite iterations (in theory)

to output a fixed point

> Related to (Chen et al’NeurlPS18) Neural
ODE, based on black-box ODE solver

> We can modify (i.e., train) the iterator or
ODE model in an end-to-end manner

33

Example

input data latent variable output inference

* Explicit network

u = Qg (d)
y = Se(u)

* Fixed-point network

u = Qg (d) — latent variable

ol u*y=:R5(? (g:*)u) loop until — fexpli.ci't network
(Can replace (2‘* by an convergence — implicit network

approximate i)
(Heaton et al’21, Gilton et al’21)

Back propagation

> Compute gradients w.r.t. parameters ©
> Define Te(u;d) = Re(u,Qe(d)) and g = Te(ia; d)

35

Back propagation

> Compute gradients w.r.t. parameters ©

> Define Teo(w;d) £ Ro(u,Qo(d)) and 4y = Te(ig;d)
dTe

> Jo(uid) 21— —=(u;d) exists a.e. if Ty is

Lipschitz and Ty is a contraction for each d

36

Back propagation

> Compute gradients w.r.t. parameters ©

> Define Teo(w;d) £ Ro(u,Qo(d)) and 4y = Te(ig;d)
> Jol(u;d) 21— %(u d) exists a.e.if Tg IS

Lipschitz and Ty is a contraction for each d

> Despite of infinite depth, backprop through
Te has finite computation and storage!

d’fbd o 8T@ d’&d 8T@ dud 1 8T@
© owde Tee — a@ Yo e

37

Jacobian-free back propagation

> (Heaton et al’21) while forward propagation
uses a fixed point, it suffices to use Tg during
back prop. No Jacobian, no matrix inverse!

> Significance: huge speedup, allows complicated
T (e.g., from operator splitting)

> Has a proof under Lipschitz and contraction
conditions

38

Traditional Backprop

;- - £ - - -
Proposed Backprop .-~

39

Test Accuracy %

95

20

85

80

75

| | | |
| Proposed Backprop (JFB)
Ry LA ! AR

U R

Backprop

Jacobian-based

0

|
250

\ \
500 750
Epoch

|
1,000

Test Accuracy %

95 |-

90

85

80

75

| | | |
Proposed Backprop (JFB)

Jacobian-based
Backprop

0 10 20 30 40 50)
Time (hr)

40

MNIST CIFAR-10

Method Model size Acc. Method Model size Acc.

Explicit 35K 99.3% Explicit 164K 80.0%

Neural ODE! 84K 96.4% Neural ODE' 172K 53.7%

Aug. Neural ODE' 84K 98.2% Aug. Neural ODE' 172K 60.6%

MON *# 84K 99.2% MON (Single conv)* 172K 74.1%

FPN 35K 99.4% FPN (ours) 164K 80.5%
SVHN Explicit (ResNet-56)* 0.85M 93.0%

Method Model size Acc. MON (Multi-tier lg):c * 1.0IM 89.7%

Explicit (ResNet) 164K 93.7% LN () Ll ST

Neural ODE' 172K 81.0%

Aug. Neural ODE' 172K 83.5%

MON (Multi-tier 1g)* 170K 92.3%

FPN (ours) 164K 94.1%

4.
Application
L earn to Predict a Game

Contextual Game

> d represents the game contextual information,
known to all the players

> We wish to predict game outcomes knowing only d

> Also train a player to play the game competitively

43

Nash equilibrium

> K self-interested players
> player k chooses to do x;,, receives uy (xy, Xx_j, d)

44

Nash equilibrium

> K self-interested players
> player k chooses to do x;,, receives uy (xy, Xx_j, d)

> NEis (x4, ..., xg) if no player can improve their
payoff by unilaterally deviating

45

Nash equilibrium

> K self-interested players
> player k chooses to do x;,, receives uy (xy, Xx_j, d)

> NEis (x4, ..., xg) if no player can improve their
payoff by unilaterally deviating

> Define game gradient F £ [V, u{ -+ Va,uk
> Define actionset ¢ or ¢ =c*nc¢?

}T

46

NE as a Fixed Point

> Using operator splitting, an NE x™ satisfies
xy = Pe (2 — F(x);d))
or
xy = Pe1(z2)) where 2, = T'(2);d) and

T(z;d) 2 x — Pei(x) + Pe2 (2Pe1(2) — 2 — F(Pe1(x);d)))

(Davis-Yin splitting)

47

Observe many d, learn Fg, thus x*

R P

Rock, paper, scissors

S
R 0 —(wl,d) w?,d
o . 1 _ 3
> d is payoff matrix . _232:?) <£3’d> L

> Fg:2-layer N-FPN, 500
parameters

> Train Fg

[a—
=
=

I
Optimal"'js Uniform

f—
o
=

Optimal vs N-FPN

> Let one player (use learned

— —

Abs. Ave. Cost y*
I

H 0-2 k Optimal vs O}:i-timal A
FQ to take actlo.ns) to play ; = =
with another with true Fg Games Played k

48

Contextual traffic routing

>
>
>
>

\Y%

d represents weather, roadwork, etc., affects speed
Each driver is selfish, minimizing commute time
NE can be analytically computed

Instead, we train a 3 layer fully connected N-FPN to
predict NE given the road network, drivers, d

C = (network constraints) N (honnegativity)
Compare to prediction to analytic solution

49

Real city network tests

TRAFIX(z5, 2%) £

#le€E:lay, oy | <elay,l]

]
dataset edges/nodes OD-pairs TRAFIX score
Sioux Falls 76/24 528 0.94
Eastern Mass. 258/74 1113 0.97
Berlin-Friedrichshain 523/224 506 0.97
Berlin-Tiergarten 766/361 644 0.95
Anaheim 914/416 1406 0.95

50

Summary

> Learning to optimize a new paradigm of optimization

> Useful at
O Use datato improve modeling and method
O Use datato find an optimization short cut

> Fixed-point network
O Yields a consistent improvement in performance
over finite-depth networks
O Issurprisingly easy to train, end-to-end

51

Co-authors, paper, and code

> Learning to Optimize: A Primer and A Benchmark. arXiv:2103.12828 by
Tianlong Chen, Xiaohan Chen, Wuyang Chen, Zhangyang Wang (UT Austin),
Jialin Liu (Alibaba US), Howard Heaton (UCLA)

> Fixed-point network: Howard Heaton (UCLA), Qiuwei Li (UCLA), Daniel
McKenzie (UCLA), Samy Wu Fung (now at Colorado Sch of Mines)

> Codes
O https://github.com/VITA-Group/Open-L.20
O https://github.com/howardheaton/fixed _point_networks
O https://github.com/howardheaton/nash_fixed_point_networks

52

https://arxiv.org/abs/2103.12828
https://github.com/VITA-Group/Open-L2O
https://github.com/howardheaton/nash_fixed_point_networks
https://github.com/howardheaton/nash_fixed_point_networks

Thanks!

Any questions?

