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Machine learning and nonconvex optimization

Machine learning mainly concerns nonlinear parametric
algorithms; parameters are optimized towards several tasks
(feature selection, dimensionality reduction, clustering,
classification, regression, . . .);

• The nonlinearity and nonconvex data misfits or penalizations/regularizations make training
phase a nonconvex optimization;

• Large amount of parameters make the optimization high dimensional and quite hard;

• First order methods, e.g. (stochastic) gradient descent, are preferred both for speed and
scalability and for being generally considered capable of escaping the trap of critical points;

• Drawbacks and limitations: objective function not differentiable, explosion or vanishing of
gradients (Feedforward neural networks), lack of guarantees of global convergence etc.

Lorenzo Pareschi Mean-field limit of stochastic particle optimization 2 / 49



Metaheuristics

Metaheuristics orchestrate an interaction between local improvement procedures and global/high
level strategies, and combine random and deterministic decisions to escape from local optima and
perform a robust search of the solution space.

• Simplex Heuristics (1965)

• Evolutionary Programming (1968)

• Metropolis-Hastings (1970)

• Simulated Annealing (1983)

• Genetic Algorithms (1992)

• Ant Colony Optimization (2005)

• Particle Swarm Optimization (2007)

• . . .

⇒ Despite tremendous empirical success lack of a robust mathematical theory, i.e. mathematical
formulation and convergence to global minimizers.
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Stochastic particle optimization methods

We consider the optimization problem

x∗ ∈ argminx∈RF(x) ,

where F(x) : Rd → R is a given (non convex,
high dimensional, possibly non smooth) cost
function.

The notion of stochastic optimization by particles

pertains to different methods:

• Stochastic particle optimization sampling

(SPOS) (Gradient-based, SG-MCMC,....)

• Particle swarm optimization (PSO)

• Consensus based optimization (CBO)

In the sequel we will focus on stochastic particle
optimization methods which are gradient-free and
based on metaheuristics.

Rastrigin function 2D
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Part I:
Mean field Particle Swarm Optimization
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The PSO method

Particle swarm optimization (PSO) is a metaheuristic optimizer that exploits the behavior of N
particles with position xi ∈ Rd and velocity vi ∈ Rd, i = 1, . . . , N , accordingly to algorithm1:

xn+1
i = xni + vn+1

i ,

vn+1
i = mvni +

c1
2

(yni − xni ) +
c2
2

(ȳn − xni )︸ ︷︷ ︸
alignment

+
c1
2
Rn1 (yni − xni ) +

c2
2
Rn2 (ȳn − xni )︸ ︷︷ ︸

exploration

,

Local best and global best influence

• ȳn is the global best position given by
argmin(F(xn1 ), . . . ,F(xnN ),F(ȳn−1));

• yni is the local best position;

• m ∈ (0, 1] is the inertia weight;

• Rn1 , Rn2 are d-dimensional diagonal
matrices of random numbers with
distribution U(−1, 1);

• c1, c2 ∈ R are acceleration coefficients.

1J. Kennedy, R. Eberhart. Proc. ICEC’95, 1995 ; J. Kennedy. Proc. ICEC’97, 1997 ; J. Kennedy. Springer, 2010
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The CBO method

A different approach to minimization is through consensus-based optimization (CBO) methods
based on the evolution of N particles with positions Xi

t ∈ Rd according to the first order SDEs2:

dXi
t = −λ(Xi

t − X̄α
t )dt︸ ︷︷ ︸

alignment

+ σD(Xi
t − X̄α

t )dBit︸ ︷︷ ︸
exploration

,

• Bit denote independent Brownian motions;

• D(Xt) = |Xt|Id or D(Xt) = diag {(Xt)1, (Xt)2, . . . , (Xt)d};

• X̄α
t = 1∑

i ω
α
F (Xit)

∑
iX

i
tω

α
F (Xi

t) where ωαF (Xi
t) = exp(−αF(Xt)) and with this choice3, for

α� 1, by Laplace’s principle we have X̄α ≈ argmin(F(X1
t ), . . . ,F(XN

t ));

• λ > 0 and σ ≥ 0 are drift parameter and noise parameter respectively;

2R. Pinnau, C. Totzeck, O. Tse and S. Martin. M3AS, 2017 ; J.A. Carrillo, Y.-P. Choi, C. Totzeck and O. Tse. M3AS, 2018 ; J.A. Carrillo, S. Jin, L. Li
and Y. Zhu. ESAIM.COCV, 2020 ; C. Totzeck and M.-T. Wolfram. MBE, 2020.

3Here exp(−αF(x)) is the Gibbs distribution corresponding to F(x). The larger the value of α, the larger the weight of the normalized Gibbs

measure for the particle is on the minimum value of the cost function F(x).
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CBO method and mean-field limit
The derivation of the mean field description of the CBO system is obtained by assuming for N � 1
that the (Xi

t), i = 1, . . . , N are indipendent with the same distribution ρ(x, t) (propagation of
chaos assumption)

ρN (x, t) =
1

N

N∑
i=1

δ(x−Xi
t) ≈ ρ(x, t), X̄α

t ≈ X̄α(ρ) =

∫
Rd xω

α
F (x)ρ(x, t)dx∫

Rd ω
α
F (x)ρ(x, t)dx

.

and the CBO dynamics is approximated by solutions of the non-linear Fokker–Planck equation

∂tρ = ∇x · λ(x− X̄α(ρ))ρ(t) +
σ2

2

d∑
j=1

∂jj((x− X̄α(ρ))2
jρ(t))

Under suitable assumptions on λ, σ and α, independently of the dimension d, the variance
V (t) → 0 exponentially fast and the expectation E[X̄α

t ] → x̃. When α is sufficiently large
and F has a unique global minimizer, together with some reasonable assumptions on F , one
can show that x̃ ≈ x∗ the global minimuma.

aJ.A. Carrillo, S. Jin, L. Li and Y. Zhu. ESAIM.COCV, 2020

Lorenzo Pareschi Mean-field limit of stochastic particle optimization 8 / 49



Stochastic Differential PSO method (SD-PSO)
The obtain a differential formulation of the PSO method, one of the difficulties consists in the
presence of particle memory. For this purpose we observe that the local best yn+1

i can be written
as a time update process

yn+1
i = yni +

1

2

(
xn+1
i − yni

) (
1 + sign

(
F(yni )−F(xn+1

i )
))

and then the PSO method can be generalized to the time discrete formalism

Xn+1
i = Xn

i + ∆t V n+1
i ,

Y n+1
i = Y ni + ν∆t

(
Xn+1
i − Y ni

) (
1 + sign

(
F(Y ni )−F(Xn+1

i )
))
,

mV n+1
i = mV ni − (1−m)V n+1

i + λ1 ∆t (Y ni −Xn
i ) + λ2 ∆t

(
Ȳ n −Xn

i

)
+ σ1

√
∆t R̃n1 (Y ni −Xn

i ) + σ2

√
∆t R̃n2D(Ȳ n −Xn

i )

where by choosing

• R̃nk , k = 1, 2 diagonal matrices of uniform random numbers with mean 0 and variance 1;

• λk = ck
2 , σk = ck

2
√

3
, k = 1, 2;

and ∆t = 1, ν = 1/2 we recover ’exactly’ the classical PSO algorithm.
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Stochastic Differential PSO method (SD-PSO)

The system can be understood as a discretization of the following system of second order SDEs4:

dXi
t = V it dt,

dY it = ν
(
Xi
t − Y it

)
Sβ(Xi

t , Y
i
t )dt︸ ︷︷ ︸

memory effect

,

mdV it = −(1−m)V it dt+ λ1

(
Y it −Xi

t

)
dt+ λ2

(
Ȳ αt −Xi

t

)
dt

+σ1D(Y it −Xi
t)dB

1,i
t + σ2D(Ȳ αt −Xi

t)dB
2,i
t ,

• Bk,it , k = 1, 2 denote independent Brownian motions;

• D(Yt) = diag {(Yt)1, (Yt)2, . . . , (Yt)d};
• Sβ(x, y) = 1 + tanh (β(F(y)−F(x))) is a sigmoid that for β � 1 approximates the

1 + sign(·) function;

• Ȳ αt = 1∑
i ω

α
F (Y it )

∑
i Y

i
t ω

α
F (Y it ) where ωαF (Y it ) = exp(−αF(Yt)) is a regularized global best.

For the Laplace’s principle, with this choice, for α� 1, Ȳ α ≈ argmin(F(Y 1
t ), . . . ,F(Y Nt )).

4S.Grassi and L. Pareschi. M3AS, 2021.
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Mean-field PSO limit (MF-PSO)
The derivation of the mean field description of the SD-PSO system is obtained by assuming for
N � 1 the triples (Xi

t , Y
i
t , V

i
t ) are independent with the same distribution f(x, y, v, t)

(propagation of chaos assumption)

fN (x, y, v, t) =
1

N

N∑
i=1

δ(x−Xi
t)δ(y − Y it )δ(v − V it ) ≈ f(x, y, v, t).

Ȳ αt ≈
∫
Rd y ω

α
F (y)ρ(y, t)dy∫

Rd ω
α
F (y)ρ(y, t)dy

, ρ(y, t) =

∫ ∫
Rd×Rd

f(x, y, v, t)dxdv.

Consequently, f(x, y, v, t) is a weak solution of the nonlinear Vlasov-Fokker-Plank equation:

∂tf + v · ∇xf +∇y ·
(
ν(x− y)Sβ(x, y)f

)
=

∇v ·
Å

1−m
m

vf +
λ1

m
(x− y)f +

λ2

m
(x− Ȳ α(ρ))f

+

Å
σ2

2

2m2
D(x− Ȳ α(ρ))2 +

σ2
1

2m2
D(x− y)2

ã
∇vf
ã
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Mean-field PSO limit (MF-PSO)

Assumptions

(1) There exists some constant L > 0 such |F(x)−F(y)| ≤ L(|x|+ |y|)|x− y| for all x, y ∈ Rd;

(2) F is bounded from below with −∞ < F := inf F and there exists some constant Cu > 0 such that

F(x)−F ≤ Cu(1 + |x|2) for all x ∈ Rd ;

(3) F has quadratic growth at infinity. Namely, there exist constants Cl, M > 0 such that

F(x)−F ≥ Cl|x|2 for all |x| ≥M .

(4) F ∈ C2(Rd) with ‖∇2F‖∞ ≤ cF for some constant cF > 0.

Under Assumptions (1)-(3) {(Xi,N
t , Y i,Nt , V i,Nt )t∈[0,T ]}Ni=1 is the unique solution to the SD-

PSO system. Then, the limit f of the sequence of the empirical measure fN exists. Moreover,
f is the unique weak solution to MF-PSO equationa. Additionally, under Assumption (4) and
in absence of memory effects, convergence to the global minimum has been provedb.

aH.Huang. Applied Mathematics Letters, 2021;

bH.Huang and J. Qiu preprint ’21; S.Grassi, L. Pareschi, H.Huang and J.Qiu. IMS Lecture Notes, 2021.;
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From PSO to CBO: small inertia limit
We consider the MF-PSO system with m = ε� 1. Introducing the local Maxwellian with unitary
mass and zero momentum

Mε(x, y, v, t) =

d∏
i=1

Mε(xi, yi, vi, t), Mε(xi, yi, vi, t) =
ε1/2

π1/2|Σ(xi, yi, t)|
exp

Ç
−

εv2
j

Σ(xi, yi, t)2

å
where Σ(xi, yi, t)

2 = σ2
1(xi − yi)2 + σ2

2(xi − Y αi (ρ)), we can write

∂tf + v · ∇xf + ∇y ·
(
ν(x− y)Sβ(x, y)f

)
+

1

ε
∇v · (εvf + λ1ε(y − x)f) + λ2(Y α(ρ)− x)f

=
1

2ε2

d∑
j=1

Σ(xi, yi, t)
2 ∂

∂vj

Å
f
∂

∂vj
log

Å
f

Mε(xi, yi, vi, t)

ãã
,

The r.h.s. is of order 1
ε2 , and for small values of ε� 1 we have

f(x, y, v, t) ≈ ρ(x, y, t)Mε(x, y, v, t).

Lorenzo Pareschi Mean-field limit of stochastic particle optimization 13 / 49



From PSO to CBO: small inertia limit

Now considering ρu =
∫
Rd f(x, y, v, t)vdv and taking the first two moments of f , we get

∂ρ

∂t
+∇x · (ρu) +∇y ·

(
ν(x− y)Sβ(x, y)ρ

)
= 0

∂ρu

∂t
+

∫
Rd
v(v · ∇xf) = −1− ε

ε
ρu+

1

ε
(λ1(y − x) + λ2(Y α(ρ)− x)) ρ.

and applying the equilibrium assumption f = ρMε, we have

∫
Rd
v(v · ∇x(ρ(x, y, t)Mε(x, y, v, t))) =

d∑
j=1

∂

∂xj

Å
ρ(x, y, t)

∫
Rd
vj(vjMε(x, y, v, t))dv

ã
=

∂

∂xj

Å
ρ(x, y, t)

∫
R
v2
jMε(xi, yi, vi, t)dvj

ã
=

1

2ε

∂

∂xj

(
ρ(x, y, t)Σ(xi, yi, t)

2
)
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From PSO to CBO: small inertia limit
thanks to this, we obtain a mean-field PSO with momentum5:

∂ρ

∂t
+∇x · (ρu) +∇y ·

(
ν(x− y)Sβ(x, y)ρ

)
= 0

∂(ρu)i
∂t

+
1

2ε

∂

∂xi

(
ρ · Σ(xi, yi, t)

2
)

= −1− ε
ε

(ρu)i +
1

ε
(λ1(yi − xi) + λ2(Y αi (ρ)− xi)) ρ.

For ε→ 0 we get a mean-field CBO system with memory effects6:

∂ρ

∂t
+∇x · (λ1(y − x) + λ2(Y α(ρ)− x)) ρ+∇y ·

(
ν(x− y)Sβ(x, y)ρ

)
=

1

2

d∑
j=1

∂2

∂x2
j

(
ρ
(
σ2

1(xj − yj)2 + σ2
2(xj − Y αj (ρ))2

))
.

Rigorous results on the small inertia limit have been proved recently7.
5See also the related work J.Chen, S.Jin and L. Lyu. arXiv:2012.04827, 2021

6S.Grassi and L. Pareschi. M3AS, 2021.

7C. Cipriani, H. Huang and J. Qiu. arXiv:2104.06939, 2021.; S.Grassi, H.Huang, L.Pareschi and J.Qiu. IMS Lecture Notes, 2021.
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Validation of the mean-field limit

Ackley function in d = 1 with global best dynamics:

t = 0.5 t = 1 t = 3

First row: solution of the SDE’s system. Second row: solution of the mean-field limit solved with finite difference
schemes. We used 5× 105 particles, a grid size of Nx = 90, Nv = 120 and initialized f0 as a uniform distribution
on a restricted domain centered in the origin.
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Validation of the mean-field limit

Ackley function in d = 1 with global best dynamics:

t = 0.5 t = 1 t = 3

Comparison between the marginal of the particle solution and ρ(x, t) =
∫
R f(x, v, t)dv.
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Validation of the mean-field limit

Ackley function in d = 1 with local best dynamics:

t = 0.5 t = 3 t = 6

First row: solution of the SDE’s system. Second row: solution of the mean-field limit solved with finite difference
schemes. We used 5× 105 particles, a grid size of Nx = 90, Ny = 90, Nv = 120 and initialized f0 as a uniform
distribution on a restricted domain centered in the origin.
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Validation of the mean-field limit

Ackley function in d = 1 with local best dynamics:

t = 0.5 t = 3 t = 6

Comparison between the marginal of the particle solution and ρ(x, t) =
∫
R
∫
R f(x, y, v, t)dvdy.
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Validation of the mean-field limit

Ackley function in d = 1 with global and local best dynamics:

t = 0.5 t = 1 t = 3

First row: solution of the SDE’s system obtained. Second row: solution of the mean-field limit solved with finite
difference schemes. We used 5× 105 particles, a grid size of Nx = 90, Ny = 90, Nv = 120 and initialized f0 as a
uniform distribution on a restricted domain centered in the origin.
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Validation of the mean-field limit - PSO

Ackley function in d = 1 with global and local best dynamics:

t = 0.5 t = 1 t = 3

Comparison between the marginal of the particle solution and ρ(x, t) =
∫
R
∫
R f(x, y, v, t)dvdy.
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Results for Rastrigin d = 20

Rastrigin Case without memory Case with memory

m σ N = 50 N = 100 N = 200 σ2 N = 50 N = 100 N = 200

0.00 Rate 9.0 100.0% 100.0% 100.0% 11.0 100.0% 100.0% 100.0%

Error 1.19e-04 1.11e-04 9.68e-05 6.83e-04 4.70e-04 4.69e-04

niter 10000.0 10000.0 9912.4 10000.0 9878.2 3290.2

0.01 Rate 7.0 100.0% 100.0% 100.0% 9.0 100.0% 100.0% 100.0%

Error 9.74e-05 2.01e-05 1.62e-05 8.60e-04 8.56e-04 8.81e-04

niter 10000.0 6899.2 2060.1 9939.5 7012.2 5422.1

0.05 Rate 3.5 37.0% 74.0% 94.0% 4.5 100.0% 100.0% 100.0%

Error 4.27e-04 1.26e-04 1.14e-04 1.15e-03 6.67e-04 6.54e-04

niter 8233.2 7814.0 7326.6 9978.0 7657.6 5639.7

0.10 Rate 2.0 1.0% 5.5% 29.5% 3.0 80.8% 96.8% 100.0%

Error 2.00e-04 1.28e-04 1.11e-04 2.94e-03 8.96e-04 8.24e-04

niter 6155.4 6221.9 6214.3 9661.5 8676.5 7331.8

SD-PSO with and without memory for λ1 = σ1 = 0, λ2 = 1, ∆t = 0.01, ν = 50, β = 3× 103 and α = 5× 104.
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Results for some benchmark functions d = 20

Case ξ = 0, σ2 = 8.0 Case ξ = 0.25, σ2 = 6.5

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

Griewank Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 2.28e-02 2.24e-02 2.19e-02 2.27e-02 2.16e-02 2.24e-02

Favg 5.57e-02 5.21e-02 4.26e-02 5.25e-02 4.93e-02 2.28e-02

niter 1010.8 861.6 761.7 1006.3 734.7 626.6

Rastrigin Rate 34.0% 70.7% 95.0% 9.0% 26.4% 42.0%

Error 1.78e-05 1.89e-05 2.05e-05 3.01e-05 3.12e-05 3.03e-05

Favg 9.32e-08 9.68e-08 9.95e-08 2.41e-07 2.58e-07 2.44e-07

niter 1308.5 1122.9 970.5 1631.0 1483.0 1334.8

Rosenbrock Rate 49.3% 84.7% 100.0% 87.3% 100.0% 100.0%

Error 2.60e-02 3.44e-02 1.08e-02 4.87e-02 3.32e-02 6.92e-03

Favg 8.58e-02 1.25e-02 9.30e-03 2.12e-02 8.01e-03 3.23e-04

niter 8009.3 8392.8 7358.0 9669.8 9553.8 7925.7

Schwefel 2.20 Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 2.11e-05 1.73e-06 7.32e-07 3.65e-06 1.63e-06 1.09e-06

Favg 2.93e-03 4.99e-04 2.18e-04 5.14e-05 2.46e-05 8.01e-06

niter 865.9 749.8 668.3 863.2 747.0 665.8

Salomon Rate 84.7% 98.7% 100.0% 100.0% 100.0% 100.0%

Error 8.94e-02 6.45e-02 4.99e-02 3.72e-02 3.21e-02 2.75e-02

Favg 8.96e-01 6.66e-01 5.24e-01 3.83e-01 3.21e-01 2.75e-01

niter 1749.3 1657.9 1631.9 2193.7 1749.7 1138.2

XSY random Rate 90.0% 99.3% 100.0% 100.0% 100.0% 100.0%

Error 4.11e-02 2.26e-02 1.14e-02 2.45e-02 1.67e-02 1.66e-02

Favg 5.64e-07 9.60e-08 6.06e-08 9.75e-09 7.26e-09 4.56e-09

niter 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0

XSY 4 Rate 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Error 1.09e+00 9.85e-01 9.70e-01 8.56e-01 8.19e-01 7.97e-01

Favg 2.88e-05 2.57e-05 7.44e-05 1.69e-07 1.42e-07 1.41e-07

niter 9682.5 9018.1 8861.6 10000.0 10000.0 10000.0

SD-PSO with memory (m = 0) for λ1 = ξ · λ2, σ1 = ξ · σ2, λ2 = 1, ∆t = 0.01, ν = 50, β = 3× 103, α = 5× 104.
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Parameter selection for benchmark functions d = 20
ξ = 0 ξ = 0.25

SD-PSO with memory (m = 0) for λ1 and σ1 given by λ1 = ξ · λ2 and σ1 = ξ · σ2 with ξ ∈ [0, 1].
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Algorithmic improvements

• Evaluate Ȳ α,Fn on batches Jb of Nb < N particles8

Ȳ α,Fn ≈
∑
i∈Jb ω

F
α (Y in)Y in∑

i∈Jb ω
F
α (Y in)

.

• Discard particles in time accordingly to the variance Σn of the solution

Nn+1 = min

ßïï
Nn

Å
1 + µ

Å
Σn+1 − Σn

Σn

ããòò
, Nmin

™
• Decrease σ in time as in simulated annealing

• Increase α in time to achieve higher precision

8S. Jin, L. Li, J-G. Liu, JCP 2020 and SINUM 2021 ;
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Binary interaction algorithms
A case of particular interest is when we restrict to batches of Nb = 2 particles interacting
(Xn

i , X
n
j )→ (Xn+1

i , Xn+1
j ) accordingly to9

Xn+1
i = Xn

i + λ1(Xβ,F (Xn
i , X

n
j )−Xn

i ) + λ2(Xn
α,F −Xn

i ) + σ1D1(Xn
i , X

n
j )ξn1 + σ2D2(Xn

i )ξn2

Xn+1
j = Xn

j + λ1(Xβ,F (Xn
j , X

n
i )−Xn

j ) + λ2(Xn
α,F −Xn

j ) + σ1D1(Xn
j , X

n
i )θn1 + σ2D2(Xn

j )θn2

where vβ,F (Xn
i , X

n
j ), β > 0, is the microscopic estimate of the best position

Xβ,F (Xn
i , X

n
j ) =

ωFβ (Xn
i )Xn

i + ωFβ (Xn
j )Xn

j

ωFβ (Xn
i ) + ωFβ (Xn

j )
, ωFβ (X) := e−βF(X),

and Xn
α,F , α > 0, is the macroscopic collective estimate

Xn
α,F =

∑N
i=1X

n
i ω
F
α (Xn

i )∑N
i=1 ω

F
α (Xn

i )
, ωFα (X) := e−αF(X)

with ξnk , θ
n
k ∈ Rd, k = 1, 2 random vectors with mean 0 and variance 1 and

D1(Xn
i , X

n
j ) = diag

{
(Xβ,F (Xn

i , X
n
j )−X)h

}
, D2(X) = diag

{
(Xn

α,F −X)h
}
, h = 1, . . . , d.

9A. Benfenati, G. Borghi, L. Pareschi. arXiv:2105.02695, 2021
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Non local mean field PSO
The mathematical description of the above process for large numbers of interacting particles can
resort on a Boltzmann type description and on the related mean field approximation.
Considering only microscopic best estimate (λ2 = σ2 = 0) we obtain the mean-field CBO dynamic

∂f(x, t)

∂t
+ λ∇x

Å
f(x, t)

∫
Rd
γFβ (x, x∗)(x∗ − x)f(x∗, t) dx∗

ã
=
σ2

2

d∑
i=1

∂2

∂v2
i

Å
f(x, t)

∫
Rd
D2
ii(x, x∗)f(x∗, t) dx∗

ã
.

The explicit expression of the diffusion term are given below for the isotropic case∫
Rd
D2
ii(x, x∗)f(x∗, t) dx∗ =

d∑
j=1

∫
Rd
γFβ (x, x∗)

2(x∗,j − xj)2f(x∗, t) dx∗

and the anisotropic one∫
Rd
D2
ii(x, x∗)f(x∗, t) dx∗ =

∫
Rd
γFβ (x, x∗)

2(x∗,i − xi)2f(x∗, t) dx∗.

In contrast to classical CBO method, both alignment as well as diffusion processes are nonlocal.
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Convergence to global minimum

In this case, under suitable assumptions on the function F , one can prove10

Theorem (Benfenati, Borghi, Pareschi)

If the model parameters {λ, σ, β} and the initial data f0 satisfy

µ := λ
Cβ,F

− 2σ2κ > 0

ν := 4(λc1+σ2κc2)βe−βF

µ‖ωFβ ‖L1(f0)
max{V (0)

1
2 , V (0)} < 1

2

then there exists ṽ ∈ Rd such that m(t) −→ x̃ as t→∞. Moreover, it holds the estimate

F(x̃) ≤ inf
x∈Rd

F(x) + r(β) +
log 2

β

where, if a miminizer x∗ of F belongs to supp(f0), then
r(β) := − 1

β log ‖ωFβ ‖L1(f0) − infx∈Rd F(x) −→ 0 as β →∞ thanks to the Laplace principle.

10A. Benfenati, G. Borghi, L. Pareschi. arXiv:2105.02695, 2021
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Application to a machine learning problem

We apply the binary CBO technique to a classical problem of Machine Learning: the scope is to
recognize digital numbers contained in images of the MNIST dataset, by using a shallow network

f(x;W, b) = softmax (ReLU (Wx+ b))

where x ∈ R784,W ∈ R10×784, b ∈ R10. Moreover

softmax(x) =
exi∑
i e
x
i

, ReLU(x) = max(0, x)

being ReLU the well–known Rectified Linear Unit function. The training of the shallow network
consists in minimizing the following function

L(X, y; f) =
1

n

n∑
i=1

`
Ä
f(X(i);W, b), yi

ä
, `(x, y) = −

10∑
i=1

yi log(xi)

where X is the training dataset, whose images are vectorized (R28×28 → R784) and stacked
column–wise. The function ` is the cross entropy.
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MNIST dataset - SGD and binary CBO

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

c
c
u
ra

c
y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c
c
u

ra
c
y

Figure: Performance comparison among SGD and binary CBO. The line referring to SGD shows the average over 500
simulations. The orange line refer to the CBO where both microscopic and macroscopic estimate are employed. The
plot on the left depicts the performance of the CBO approach using Np = 500 without any particle reduction
strategy (the solid line is a smooth representation of the shaded one), while the plot on the right refers to particle
reduction with µ = 0.1 with different choices for particle numbers Np and particles’ batch mp. The average number
of particles is denoted by Na.
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Part II:
Consensus Based Optimization on hypersurfaces
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Stochastic particle optimization on hypersurfaces

• Constrained problems on hypersurfaces are ubiquitous in the natural sciences, engineering or
computer science.

• A vast class of optimization problems can be reduced to constrained optimizations over the
sphere where the vector of particles has a unitary norm.

• For example a variety of nonlinear optimization problems on a sphere need to be performed
over the surface of the Earth in geophysics, climate modeling, or global navigation.

• Other applications in signal processing and machine learning, for example the phase retrieval
problem and the robust subspace detection.
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Consensus based optimization on the sphere
Motivated by these aspects, we consider

x∗ ∈ arg min
x∈Sd−1

F(x) ,

where F : Rd → R is a given continuous cost function.
System of N interacting particles {(Xi

t)t≥0}i=1,...,N following a Kuramoto-Vicsek consensus based
optimization (KV-CBO) dynamic in Itô’s form

dXi
t = λP (Xi

t)X̄
α
t dt︸ ︷︷ ︸

alignment

+σ|Xi
t − X̄α

t |P (Xi
t)dB

i
t︸ ︷︷ ︸

exploration

− σ2

2
(Xi

t − X̄α
t )2 (d− 1)Xi

t

|Xi
t |2

dt︸ ︷︷ ︸
constraint

,

where λ, σ > 0, P (x) = I − xxT

|x|2
, and

x∗ ≈ X̄α
t (ρNt ) =

∑N
j=1X

j
t ω
F
α (Xj

t )∑N
j=1 ω

F
α (Xj

t )
, ωFα (x) := e−αF(x) .
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Simple numerical implementation (Euler-Maruyama)

Algorithm:

• Inputs: ∆t, σ, α, d, N , nT and the function F(·)
• Generate Xi

0, i = 1, . . . , N sample vectors uniformly on Sd−1;

• For n = 0 to nT

• Generate ∆Bin independent normal random vectors N(0,∆t);
• Compute X̄α,F

n ;
• X̃i

n+1 ←

Xi
n + ∆tP (Xi

n)X̄α,F
n + σ|Xi

n − X̄α,F
n |P (Xi

n)∆Bin −∆t
σ2

2
(Xi

n − X̄α,F
n )2(d− 1)Xi

n,

• Xi
n+1 ← X̃i

n+1/|X̃i
n+1|, i = 1, . . . , N ;
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Ackley function on the sphere centered minimum
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Ackley function on the sphere shifted minimum
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Rastrigin function on the sphere centered minimum
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Rastrigin function on the sphere shifted minimum
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Ackley function in d = 20

x∗ N = 50 N = 100 N = 200
Nb = 40 Nb = 70 Nb = 100

(0, . . . , 0, 1)T Rate 100% 100% 100%
Error 2.24118e− 08 1.3364e− 09 3.51083e− 09

(d−1/2, . . . , d−1/2)T Rate 98% 99% 100%
Error 1.15704e− 06 1.476e− 09 5.09216e− 09

Table I α = 5 × 104, σ = 0.3, ∆t = 0.05, Nmin = 10 and T = 100

x∗ N0 = 100 N0 = 200 N0 = 400
Nb = 70 Nb = 100 Nb = 150

(0, . . . , 0, 1)T Rate 100% 100% 100%
µ = 0.3 Error 1.20639e− 07 3.73419e− 08 2.24362e− 08

Navg 21.6 38.7 71.4

(d−1/2, . . . , d−1/2)T Rate 100% 100% 100%
µ = 0.2 Error 1.34745e− 06 2.02787e− 08 8.06536e− 09

Navg 27.3 53.1 103.0

Table II α = 5 × 104, σ = 0.3, ∆t = 0.05, Nmin = 10 and T = 100
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Main theoretical result

Assumptions11:

1. F ∈ C2(Sd−1);

2. For any x ∈ Sd−1 there exists a minimizer x∗ ∈ Sd−1 of F (which may depend on x) such
that it holds (inverse continuity)

|x− x∗| ≤ C0|F(x)−F|β ,

where β,C0 are some positive constants.

Theorem (Fornasier,Hui,P.,Sünnen)

For all ε > 0, assume that the intital datum and parameters are well-prepared for a time horizon
T ∗ > 0 and parameter α > 0 large enough. Then

E

∣∣∣∣∣ 1

N

N∑
i=1

Xi
∆t,nT∗

− x∗
∣∣∣∣∣
2
 . (∆t)2m︸ ︷︷ ︸

Discretization error

+ N−2/d︸ ︷︷ ︸
Mean−field limit

+ ε2︸︷︷︸
Laplace principle

.

11Regularity of F is required to ensure formal well-posedness and for the large-time behavior analysis, but it is not necessary in numerical
implementations. Requirement 2 is a bit more technical and needs to be verified, depending on the specific application
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Fundamental steps of the proof I

• Well-posedness of the multiparticle SDE system;

• Well-posedness of the an auxiliary self-consistent nonlinear SDE satisfying

dXt = λP (Xt)X̄
α
t (ρt)dt+ σ|Xt − X̄α

t (ρt)|P (Xt)dBt

− (d− 1)σ2

2
(Xt − X̄α

t (ρt))
2 Xt

|Xt|2
dt ,

with the initial data X0 distributed according to ρ0 ∈ P(Sd−1) and ρt = law(Xt);;

• Proof that ρt solves the mean-field KV-CBO equation on the sphere and uniqueness:

∂tρt = λ∇Sd−1 · ((〈X̄α,F (ρt), x〉x− X̄α
t (ρt))ρt) +

σ2

2
∆Sd−1(|x− X̄α

t (ρt)|2ρt),

with the initial data ρ0 ∈ P(Sd−1). Here ρ = ρ(t, x) ∈ P(Sd−1) is a Borel probability measure
on Sd−1 and

X̄α
t (ρt) =

∫
Sd−1 xω

F
α (x) dρt∫

Sd−1 ωFα (x) dρt
.
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Fundamental steps of the proof II

• Mean-field limit:
sup
t∈[0,T ]

E
[
W 2

2 (ρNt , ρt)
]
. N−2/d → 0 as N →∞ .

where W2 is the 2-Wasserstein distance.

• Regularity of solutions: for ρ0 ∈ L2(Sd−1)

ρ ∈ L∞([0, T ];L2(Sd−1)) ∩ L2([0, T ];H1(Sd−1)).

• Large time behavior: ε > 0 and assume that the intital datum and parameters are
well-prepared for a time horizon T ∗ > 0 and parameter α∗ > 0 large enough. Then E(ρT∗)
well approximates a minimizer x∗ of F ,

|E(ρT∗)− x∗| ≤ ε,

where E(ρT∗) =
∫
Sd−1 xdρT∗
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Concluding step

Considering the time discretization error, the mean-field limit, and the asymptotic analysis, we
conclude12

E

∣∣∣∣∣ 1

N

N∑
i=1

Xi
∆t,nT∗

− x∗
∣∣∣∣∣
2
 . E

∣∣∣∣∣ 1

N

N∑
i=1

Xi
∆t,nT∗

−Xi
T∗

∣∣∣∣∣
2


+ E[W 2
2 (ρNT∗ , ρT∗)] + |E(ρT∗)− x∗|2

. (∆t)2m +N−2/d + ε2 .

12The Euler-Maruyama scheme converges strongly with order m = 1/2.
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Application: Phase retrieval problem

• Recently there has been growing interest in recovering an input vector z∗ ∈ Rd from quadratic
measurements

yi = |〈z∗, ai〉|2 + wi, i = 1, ...,M

where wi is adversarial noise, and ai are a set of known vectors.

• Phase retrieval problems arise in many areas of optics, where the detector can only measure
the magnitude of the received optical wave. Important applications of phase retrieval include
X-ray crystallography, transmission electron microscopy and coherent diffractive imaging.

• Several algorithms have been devised based on different principles, such as alternating
projections, lifting and convex relaxation, and simple gradient descent for empirical risk
minimization:

F(z) =

M∑
i=1

∣∣|〈z, ai〉|2 − yi∣∣2 .
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Phase retrieval problem: comparison with state of the art

Figure: We used σ = 0.2,∆t = 0.1, N = 104 and chose the parameter α adaptively. The results are averaged 25
times.

Left: Success rate in terms of the Signal-to-Noise Ratio in dimension d = 32 for M = 4d Gaussian
vectors. The green dashed curve representing KV-CBO is exactly superimposed with the light blue
curve of the Wirtinger Flow13.
Right: Phase transitions for different Gaussian vectors M in dimension d = 32.

13E.J Candes, X. Li, M. Soltanolkotabi IEEE Tran. Inf. Theo. 2015
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Application: Robust subspace detection

Cloud of points Q = {x(i) ∈ Rd : i = 1, ...,M} in an Euclidean space with d� 1. Robust
subspace detection: minimization of the energy

Fp(x) :=

M∑
i=1

|x(i) − 〈x(i), x〉x|p =

M∑
i=1

(
|x(i)|2 − |〈x(i), x〉|2

)p/2
, x ∈ Sd−1,

for 0 < p� 2.

Figure: Samples from the 10K US Adult Faces Database and one outlier.

We chose a subset of M = 421 gray scale images of size 64× 45 from the 10K US Adult Faces
Database, which yields a point cloud in d = 2880.
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Robust subspace detection: computation of eigenfaces

(a) (b) (c) (d) (e) (f)

Figure: λ = 1, σ = 0.019,∆t = 0.25, T = 25000, N = 5000 and Nmin = 150 for (b) and (d). For (f) we used
N = 50000 and Nmin = 5000.

1 Eigenface for the point cloud of faces without outliers computed by SVD (a), and the
KV-CBO method (b).

2 Eigenface for point cloud with 6 outliers computed by SVD (c), and the KV-CBO method
with p = 1 (d).

3 Eigenface for point cloud with 12 outliers computed by SVD (e), and the KV-CBO method
with p = 0.5 (f).

PSNR: 61.4214 for (a) and (b),
15.9764 for (a) and (c), 20.7344 for (a) and (d),
12.3109 for (a) and (e) and 14.2892 for (a) and (f).
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Some future research directions

• Further testing of the CBO system with memory (and momentum);

• Rigorous convergence to global minimum in presence of memory

• Testing adaptive inertia and determination of optimal sets of parameters;

• Extensions of the methods to multi-objective problems;

• Extensions to constrained optimization problems.

• . . .

Collaborators:

A. Benfenati (U. Milan), G. Borghi (U. Aachen & U. Ferrara), S. Grassi (U. Ferrara),
M. Fornasier (TU Munich), P. Sünnen (TU Munich)
H. Huang (U. Calgary), J. Qiu (U. Calgary)
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