Analysis of Neural Networks (3) — Neural Network and Numerical PDEs

Jinchao Xu 许进超

Penn State University

xu@math.psu.edu http://www.math.psu.edu/xu/

CUHK, October 22, 2021

NSF: DMS-1819157 and DMS-2111387

100	h 0 0	~ ~
	l au	A U

Finite element methods

- 3 Neural network functions
- Finite neuron method
- 5 Optimization algorithms
- 6 Numerical examples
- 7 Concluding remarks

Analysis of Neural Network

Jinchao Xu

This lecture series will provide some mathematical understanding of neural networks and machine learning by studying their close relationship with classic numerical methods such as finite element and multigrid methods. Applications will be given to image classification and numerical partial differential equations

Finite Element Connection and Approximation Theory

- ReLU neural networks = linear finite elements
- Largest function class that a stable neural network can approximate
- Optimal approximation rates for popular neural networks

2 Multigrid and Image Classification

- Linear separable sets and logistic regression
- A model for feature extractions
- Image classification by multigrid method

Output A stress of the stre

- Error analysis of neural network for numerical PDEs
- Numerical quadrature and Rademacher complexity analysis
- Training algorithm that achieves the best asymptotic convergence rate

Outline

Finite element methods

- 3 Neural network functions
- 4 Finite neuron method
- 5 Optimization algorithms
- 6 Numerical examples
- 7 Concluding remarks

Finite element: Piecewise linear functions

• Uniform grid T_h

$$0 = x_0 < x_1 < \dots < x_{N+1} = 1, \quad x_j = \frac{j}{N+1} \ (j = 0 : N+1)$$

$$x_0 \qquad x_j \qquad x_{N+1}$$
Figure: 1D uniform grid

Linear finite element space

 $V_h = \{ v : v \text{ is continuous and piecewise linear w.r.t. } \mathcal{T}_h \}.$

Jinchao Xu

Finite element in multi-dimensions (k = 1)

Lower bound for conforming elements

Theorem

Assume that V_h^k is a finite element of degree k on quasi-uniform mesh $\{\mathcal{T}_h\}$ of $\mathcal{O}(n)$ elements. Assume u is sufficiently smooth and not piecewise polynomials, then we have

$$c(u)n^{-\frac{k}{d}} \leq \inf_{v_h \in V_h^k} \|u - v_h\|_{H^1(\Omega)} \leq C(u)n^{-\frac{k}{d}}.$$
(1)

In general

$$\inf_{\ell_h \in V_h^k} \| u - v_h \|_{H_h^m(\Omega)} \approx n^{\frac{m - (k+1)}{d}}.$$
 (2)

Ref: Q. Lin, H. Xie and J. Xu , Lower Bounds of the Discretization Error for Piecewise Polynomials, Math. Comp., 83, 1-13 (2014)

Model problem

(for any $d \ge 1, m \ge 1$) Given $\Omega \subset \mathbb{R}^d$, consider a 2*m*-th order elliptic problems

$$\sum_{|\alpha|=m} (-1)^m \partial^{\alpha} (a_{\alpha}(x) \partial^{\alpha} u) + u = f \quad \text{in } \Omega$$

Special cases:

$$-\Delta u = f$$
 (m = 1), $\Delta^2 u = f$ (m = 2).

Find $u \in V$ such that

$$J(u) = \min_{v \in V} J(v) \iff a(u, v) = \langle f, v \rangle \quad \forall v \in V$$

where, for some $a_{lpha} > 0$

$$a(u,v) := \sum_{|\alpha|=m} (a_{\alpha}\partial^{\alpha}u, \partial^{\alpha}v) + (u,v), \quad J(v) = \frac{1}{2}a(v,v) - (f,v)$$

and

$$V = \left\{ egin{array}{cc} H^m(\Omega) & Neumann \ H^m_0(\Omega) & Dirichlet \end{array}
ight.$$

(3)

On the construction of conforming FEM

Question: For any $m, d \ge 1$, how to construct conforming finite element space

 $V_h \subset H^m(\Omega) \iff V_h \subset C^{m-1}(\Omega)$?

Answer: mostly open, especially when $m \ge 3$, $d \ge 3$ until recently (2021)

Theorem (Hu, Lin, & Wu 2021, ArXiv: 2103.14924))

For any $d \ge 1$, $m \ge 0$, a globally H^m finite element of degree $k \ge 2^d(m-1) + 1$ can be constructed on any simplicial mesh with locally defined DOF.

• k = 9 and dim $(P_9) = 220$ if d = 3, m = 2.

Challenges in classic finite element methods

High dimensional problems: linear element

$$c(u)n^{-\frac{1}{a}} \leq \|u-u_h\|_{H^1(\Omega)} \leq C(u)n^{-\frac{1}{a}}.$$

curse of dimensionality

- 2 High order PDEs
 - Conforming elements: very high order polynomials

(4)

Finite element methods

- 3 Neural network functions
 - 4 Finite neuron method
- 5 Optimization algorithms
- 6 Numerical examples
- 7 Concluding remarks

$\sigma\text{-DNN}$: Linears, activation and composition

1

3

Start from a linear function

$$W^0x + b^0$$

$$x^{(1)} = \sigma(W^0 x + b^0)$$

Compose with another linear function:

 $W^1 x^{(1)} + b^1$

Compose with the activation function:

 $x^{(2)} = \sigma(W^1 x^{(1)} + b^1)$

Compose with another linear function

 $f(x;\Theta) = W^2 x^{(2)} + b^2$

6

Deep neural network functions with *l*-hidden layers

$$\Sigma^{\sigma}_{n_{1,\ell}} = \{ W^{\ell} x^{(\ell)} + b^{\ell}, \ W^{i} \in \mathbb{R}^{n_{i}}, \ b_{i} \in \mathbb{R} \}$$

ReLU-DNN and FEM

 $\begin{aligned} & \textit{ReLU-DNN} = \Sigma_{n_{1:\ell}}^1 = \textit{Linear FEM} \subset H^1(\Omega) \\ & \textit{ReLU-DNN}^k = \Sigma_{n_{1:\ell}}^k = \textit{piecewise polynomials} \subset H^k(\Omega) \end{aligned}$

 Conforming piecewise polynomials of low order are trivial to construct using neural networks! (5)

Stable Neural Network

Consider approximation from the class

$$\Sigma_{n,M}^{\sigma} := \left\{ \sum_{i=1}^{n} a_i \sigma(\omega_i \cdot x + b_i), \ \omega_i \in \mathbb{R}^d, \ b_i \in \mathbb{R}, \sum_{i=1}^{n} |a_i| \le M \right\}$$
(6)

of neural networks with ℓ^1 -bounded outer coefficients.

• More generally for a dictionary $\mathbb{D} \subset H = L^2(\Omega)$, consider

$$\Sigma_{n,M}(\mathbb{D}) = \left\{ \sum_{i=1}^{n} a_i h_i, \ h_i \in \mathbb{D}, \ \sum_{i=1}^{n} |a_i| \le M \right\}$$
(7)

• Let $M < \infty$ be fixed and consider approximation as $n \to \infty$.

An abstract approach: variation space

• Let $\mathbb{D} \subset X$ be collection of functions (called a dictionary)

- Let \mathbb{D} be symmetric, i.e. $f \in \mathbb{D} \to -f \in \mathbb{D}$
- Given r > 0, define

$$B_r(\mathbb{D}) := \overline{\left\{\sum_{j=1}^n a_j h_j: n \in \mathbb{N}, h_j \in \mathbb{D}, \sum_{i=1}^n |a_i| \le r\right\}^{\chi}}$$

We note that $B_r(\mathbb{D}) = rB_1(\mathbb{D})$ and

▶ B₁(D) is the closed convex hull of D

(8)

Variation spaces

$$||f||_{\mathcal{K}_1(\mathbb{D})} = \inf\{r > 0 : f \in B_r(\mathbb{D})\}$$
(9)

Namely,

Define

$$f \approx \sum_{j=1}^{n} a_j h_j, \quad \sum_{i=1}^{n} |a_i| \le r = \|f\|_{\mathcal{K}_1(\mathbb{D})}$$
 (10)

• If \mathbb{D} is bounded, the associated space, known as variation space

$$\mathcal{K}_1(\mathbb{D}) := \{ f \in L^2(\Omega) : \|f\|_{\mathcal{K}_1(\mathbb{D})} < \infty \}$$

is a Banach space1

¹siegel2021some.

Jinchao Xu

Stable Dictionary Approximation Space

Theorem (Siegel & Xu 2021)						
A function $f \in H = L^2(\Omega)$ can be approximated at all, i.e.	A function $f \in H = L^2(\Omega)$ can be approximated at all, i.e.					
$\lim_{n\to\infty}\inf_{f_n\in\Sigma_{n,M}(\mathbb{D})}\ f-f_n\ _H=0,$	(11)					
for a fixed $M < \infty$ if and only if $f \in B_M(\mathbb{D}) \subset \mathcal{K}_1(\mathbb{D}).$						
Furthermore, if $\ \mathbb{D}\ \equiv \sup_{h\in\mathbb{D}} \ h\ _{H} < \infty$						
we have $\inf_{f_n\in\Sigma_{n,M}(\mathbb{D})}\ f-f_n\ _H\leq n^{-\frac{1}{2}}\ \mathbb{D}\ \ f\ _{\mathcal{K}_1(\mathbb{D})}.$	(12)					
The second secon						

New Optimal Bounds³

Theorem

For $\mathbb{D} = \mathbb{P}_k^d$ for $k \ge 1$, we have

$$n^{-\frac{1}{2} - \frac{2k+1}{2d} - \varepsilon} \lesssim \sup_{f \in B_1(\mathbb{D})} \inf_{f_n \in \Sigma_{n,M}^k} \|f - f_n\|_{L^2(\Omega)} \lesssim n^{-\frac{1}{2} - \frac{2k+1}{2d}}$$
(13)

In comparison: optimal bound for finite elements²:

$$c(u)n^{-\frac{k}{d}} \leq \inf_{v_h \in V_h^k} \|u - v_h\|_{L^2(\Omega)} \leq C(u)n^{-\frac{k}{d}} = \mathcal{O}(h^k).$$
(14)

Earlier but nonoptimal results:

Andrew R Barron(1993), Yuly Makovoz(1996), Jason M Klusowski & Andrew R Barron(2018), Weinan E & Chao Ma & Lei Wu(2019), Jinchao Xu(2021), Jonathan W. Siegel & Jinchao Xu(2021)

³siegel2021optimal.

Jinchao Xu

²lin2014lower.

Removing the constraint that $\sum_{i=1}^{n} |a_i| \leq M$

$$\Sigma_n^k := \left\{ \sum_{i=1}^n a_i \sigma_k (\omega_i \cdot x + b_i), \ \omega_i \in \mathbb{R}^d, \ b_i \in \mathbb{R}, a_i \in \mathbb{R} \right\}.$$
(15)

Then Σ_n^k has the following approximation property⁴

Theorem (Siegel and Xu)

$$\inf_{n \in \Sigma_n^k} \|f - f_n\| \lesssim \begin{cases} n^{-\frac{1}{2}} & \|f\|_{B^s(\Omega)} & \text{if } s = \frac{1}{2} \\ n^{-(k+1)} \log n & \|f\|_{B^s(\Omega)} & \text{for some } s > 1 \end{cases}$$
(16)

where

$$|f||_{B^{s}(\Omega))} = \inf_{f_{\theta}|_{\Omega} = f} \int_{\mathbb{R}^{d}} (1 + |\xi|)^{s} |\hat{f}_{\theta}(\xi)| d\xi.$$
(17)

- Improves result of Barron⁵ by relaxing condition on f
- Shows that very high order approximation rates can be attained with sufficient smoothness
- Comparison with FEM:

$$\inf_{w\in\Sigma_n^k} \|u-w\| \approx \left\{\inf_{v\in V_n^k} \|u-v\|\right\}^d.$$

⁴siegel2020high.

⁵barron1993universal.

Sparse-Grid Space versus Barron Space

(k = 1, ReLU)Basic estimates

NN function space approximation

$$\|u - u_n\|_{0,\Omega} \lesssim n^{-1/2} \|u\|_{B^{\frac{1}{2}}(\Omega)}, \quad \|u - u_n\|_{1,\Omega} \lesssim n^{-1/2} \|u\|_{B^{\frac{3}{2}}(\Omega)}.$$
 (18)

Sparse-grid approximations
 Original (Zenger 1991):

$$\|u - u_n\|_{1,\Omega} \lesssim n^{-1} (\log n)^{d-1} |u|_{SG(\Omega)}.$$
 (19)

where

$$|u|_{SG(\Omega)} = \|\partial_{x_1}^2 \cdots \partial_{x_d}^2 u\|_{0,\Omega}.$$
 (20)

$$\|u-u_n\|_{1,\Omega} \lesssim n^{-1} \|\partial_{x_1}^2 \cdots \partial_{x_d}^2 u\|_{\infty,\Omega}.$$
(21)

Imbedding relationship:

$$SG(\Omega) \subset B^{3/2-\epsilon}(\Omega) \subset B^{1/2}(\Omega)$$
 (22)

Conclusion:

Shallow neural network function class seems to be potentially "better than" sparsegrid function class for approximation without "curse of dimensionality".

Jinchao Xu

CUHK 20/58

Finite element methods

- 3 Neural network functions
- 4 Finite neuron method
- 5 Optimization algorithms
- 6 Numerical examples
- 7 Concluding remarks

Model problem

(for any $d \ge 1, m \ge 1$)

Given $\Omega \subset \mathbb{R}^d$, consider a 2*m*-th order elliptic problems

$$\sum_{|\alpha|=m} (-1)^m \partial^{\alpha} (a_{\alpha}(x) \partial^{\alpha} u) + u = f \quad \text{in } \Omega.$$

Special cases:

$$-\Delta u = f$$
 (m = 1), $\Delta^2 u = f$ (m = 2).

Conforming elements by neural network: $V_n^k \subset H^m(\Omega)$

$$V_n^k = \left\{\sum_{i=1}^n a_i (w_i x + b_i)_+^k, w_i \in \mathbb{R}^{1 \times d}, a_i, b_i \in \mathbb{R}^1\right\}$$

where

$$hax(0, x) = \operatorname{ReLU}(x)$$

Properties:

(1) Conforming for any $m, d \ge 1$ if $k \ge m$:

 $x_{+} = m$

$$V_n^k \subset H^k(\Omega) \subset H^m(\Omega)$$

Piecewise polynomials of degree k in the following grids

Application to high order PDE in any dimension

Consider

$$\begin{cases} Lu = f & \text{in } \Omega, \\ B_N^k(u) = 0, & \text{on } \partial\Omega, \quad 0 \le k \le m - 1. \end{cases}$$
(23)

 \iff Find $u \in V = H^m(\Omega)$ such that

$$J(u) = \min_{v \in V} J(v)$$
(24)

where

$$J(v) = \frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha} |\partial^{\alpha} v|^{2} + v^{2} dx - (f, v).$$
(25)

NN-FEM(FNM):⁶Find $u_n \in V_n^k$ as follows:

$$J(u_n) = \min_{v \in V_n^k} J(v).$$
⁽²⁶⁾

Theorem:

$$\|u - u_n\|_a = \inf_{v_n \in V_n^k} \|u - v_n\|_a = \mathcal{O}(n^{m-(k+1)} \log n).$$
(27)

⁶CiCP-28-1707.

Jinchao Xu

Superconvergence (?) property

For d = 2, m = 1, consider

$$\Delta^2 u = f.$$

• Morley:
$$||u - u_n||_{2,h} = \mathcal{O}(h^1) = \mathcal{O}(n^{-\frac{1}{2}}).$$

• NN-FEM: $||u - u_n||_2 = \mathcal{O}(h^2) = \mathcal{O}(n^{-1}).$
• $k = 5$
• Argyris: $||u - u_h||_2 = \mathcal{O}(h^4) = \mathcal{O}(n^{-2}).$
• NN-FEM: $||u - u_h||_2 = \mathcal{O}(h^8) = \mathcal{O}(n^{-4}).$

Properties of [ReLU]^k-DNN_ℓ

- Piecewise polynomials on "curved" elements
- Best possible error estimate $O(n^{m-(k+1)} \log n)$
 - If $k \ge 2$, we have spectral accuracy for smooth solution as ℓ increase⁷.
- Possible multi-scale adaptivity features (?):
 - Iocal singularity.
 - global smoothness

⁷li2019better.

Jinchao Xu

Issues:

• Discretization of the integral in J(u), i.e. how do we evaluate

$$\int_{\Omega} |\nabla u(x)|^2 dx - \int_{\Omega} f(x)u(x)dx?$$
(28)

• Optimization of the discrete energy, i.e. how can we efficiently solve

 $\min J_N(u)$

Convergence analysis when numerical quadratures are used? Existing works:

- M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen, and P. Wurstemberger, 2020;
- T. Luo and H. Yang, 2020;
- S. Mishra and T. K. Rusch, 2020; S. Mishra and R. Molinaro, 2020;
- J. Müller and M. Zeinhofer, 2020;
- Y. Shin, Z. Zhang, and G.E. Karniadakis, 2020;
- S. Lanthaler, S. Mishra, G.E. Karniadakis, 2021;
- J. Lu, Y. Lu and M. Wang, 2021;
- H. Son, J. Jang, W. Han, and H. J. Hwang, 2021;

(29)

Discretization of the Integral

There are two approaches for discretizing J(u)

Sample points $x_1, ..., x_N$ uniformly at random from Ω and form

$$J_N(u) = \frac{1}{N} \sum_{i=1}^{N} |\nabla u(x_i)|^2 - f(x_i)u(x_i).$$
(30)

Use a numerical quadrature rule such as Gaussian quadrature

$$J_N(u) = \sum_{i=1}^N a_i (|\nabla u(x_i)|^2 - f(x_i)u(x_i)).$$
(31)

Error analysis

Numerical quadrature: for any g(x), $N = \frac{(k-1)d}{2}$

$$\left|\int_{\Omega} g(x)dx - |\Omega| \sum_{i=1}^{N} w_i g(x_i)\right| \lesssim N^{-\frac{r+1}{d}} \|g\|_{r,1}.$$

Challenges: how to bound

$$\|g\|_{r,1} \leq ?$$
, for $g \in \Sigma_n^{\sigma}$

OK if the following Bernstein or inverse inequality holds for r > s

$$|v_n||_r \lesssim n^{\beta} ||v_n||_s, \quad \forall v_n \in \Sigma_n^k.$$
 (32)

Many attempts have been made in existing literature

Bad news: Bernstein inequalty does not hold for NN

Given any $\epsilon > 0$, consider an NN function with 3 neurons:

$$u_3(x) = \operatorname{ReLU}(x - \frac{1}{2} + \epsilon) - 2\operatorname{ReLU}(x - \frac{1}{2}) + \operatorname{ReLU}(x - \frac{1}{2} - \epsilon), \quad \forall x \in (0, 1).$$

A direct calculation shows that

$$\int_0^1 |u_3'(x)|^2 dx = 2\epsilon \text{ and } \int_0^1 |u_3(x)|^2 dx = \epsilon^2.$$

Therefore

$$|u_3|_{H^1} = \sqrt{\frac{2}{\epsilon}} ||u_3||_{L^2}, \quad \forall \epsilon > 0$$

As a result, the following Bernstein inequality can not hold for any constant⁸ C(n)

$$\|v_n\|_{H^1} \leq C(n) \|v_n\|_{L^2}, \quad \forall v_n \in \Sigma_n^{\sigma}$$

⁸hong2021rademacher.

Our approach

Development and analysis of stable neural network!

The use of $\mathcal{K}_1(\mathbb{D})$

 We consider the following variational form of Laplace's equation with Neumann boundary conditions

$$\min_{\nu \in H^1(\Omega)} J(\nu) := \int_{\Omega} |\nabla \nu(x)|^2 dx - \int_{\Omega} f(x)\nu(x) dx.$$
(33)

We solve this problem by restricting

$$\min_{\|v\|_{\mathcal{K}_1(\mathbb{D})} \le M} J(v) := \int_{\Omega} |\nabla v(x)|^2 dx - \int_{\Omega} f(x)v(x) dx,$$
(34)

for some M.

With numerical quadrature

$$\min_{\|v\|_{\mathcal{K}_1(\mathbb{D})} \le M} J_N(v) \approx \int_{\Omega} |\nabla v(x)|^2 dx - \int_{\Omega} f(x)v(x) dx,$$
(35)

for some M.

Uniform Bound on the Error

• When using numerical quadrature, we require the dictionary $\mathbb D$ to satisfy

$$\mathbb{D}|_{W^{k,\infty}(\Omega)} := \sup_{d \in \mathbb{D}} \|d\|_{W^{k,\infty}(\Omega)} \le C < \infty.$$
(36)

This means that $||u||_{W^{k,\infty}(\Omega)} \leq C ||u||_{\mathcal{K}_1(\mathbb{D})}$.

So if we use *r*-th order quadrature, we will get⁹

$$|J_N(u) - J(u)| \lesssim N^{-\frac{r+1}{d}},\tag{37}$$

uniformly on $\{u : \|u\|_{\mathcal{K}_1(\mathbb{D})} \leq M\}$.

⁹hong2021rademacher.

Error estimates for numerical quadrature

$$\Sigma_{n,M}^{k} = \left\{ \sum_{i=1}^{n} a_{i} \sigma_{k} (\omega_{i} \cdot x + b_{i}) : \omega_{i} \in \mathbb{S}^{d-1}, \ |b_{i}| \leq 2, \ \sum_{i=1}^{n} |a_{i}| \leq M \right\} \subset W^{k,\infty}(\Omega)$$

with

$$M = \|u\|_{\mathcal{K}_1(\mathbb{P}^d_k)}$$

Theorem

Let N be the number of quadrature points and

$$J_N(u_{n,N,M}) = \min_{v \in \Sigma_{n,M}^k} J_N(v).$$
(38)

If $N = \mathcal{O}(n^{\frac{d+1+2(k-m)}{k-1}})$, it holds that

$$\|u - u_{n,N,M}\|_a \lesssim n^{-\frac{1}{2} - \frac{2(k-m)+1}{2d}} \|u\|_{\mathcal{K}_1(\mathbb{P}^d_k)}.$$

Similarly for $u_{n,N,M} \in \Sigma_{n,M}^{cos}$ with appropriate numerical quadrature, we have

$$\|u - u_{n,N,M}\|_a \lesssim n^{-s} \|u\|_{B^{s+m}(\Omega)}, \quad s > 0.$$

100	h 0 0	

2 Since

Since

 $\frac{1}{2}$

$$|J_{N}(v) - J(v)| \leq N^{-\frac{k-1}{d}} ||v||_{k,2}.$$
(39)
3 Since Ω is bounded, $\omega_{i} \in \mathbb{S}^{d-1}$, $|b_{i}| \leq 2$, $\sum_{i=1}^{n} |a_{i}| \leq ||u||_{\mathcal{K}_{1}(\mathbb{P}_{k}^{d})},$
 $||u_{n,N,M}||_{k,\infty} \lesssim ||u||_{\mathcal{K}_{1}(\mathbb{P}_{k}^{d})}.$

3 For any *n*, there exists $v_{n,M} \in \Sigma_{n,M}^{k}$
 $||u - v_{n,M}||_{a} \lesssim n^{-\frac{1}{2} - \frac{2(k-m)+1}{2d}} ||u||_{\mathcal{K}_{1}(\mathbb{P}_{k}^{d})}.$

40)
3 Since $J_{N}(u_{n,N,M}) \leq J_{N}(v_{n,M}),$
 $\frac{1}{2} ||u - u_{n,N,M}||_{a}^{2} = J(u_{n,N,M}) - J(u)$

$$\leq J(u_{n,N,M}) - J_N(u_{n,N,M}) + J_N(v_{n,M}) - J(v_{n,M}) + J(v_{n,M}) - J(u) \lesssim N^{-\frac{k-1}{d}} + \|v_{n,M} - u\|_a^2 \lesssim (N^{-\frac{k-1}{d}} + n^{-1 - \frac{2(k-m)+1}{d}}) \|u\|_{\mathcal{K}_1(\mathbb{P}_k^d)}^2.$$

5 Choose $N = \mathcal{O}(n^{\frac{d+1+2(k-m)}{k-1}})$, then

$$\|u - u_{n,N,M}\|_a \lesssim n^{-\frac{1}{2} - \frac{2(k-m)+1}{2d}} \|u\|_{\mathcal{K}_1(\mathbb{P}^d_k)}.$$

Uniform Bound on the Error (cont.)

Lemma (Bartlett, 2002)

Let \mathcal{F} be a set of functions. Then

$$\mathbb{E}_{x_1,\ldots,x_N\sim\mu}\sup_{h\in\mathcal{F}}\left|\frac{1}{N}\sum_{i=1}^N h(x_i) - \int_{\Omega} h(x)d\mu\right| \le 2R_N(\mathcal{F}).$$
(41)

where $R_N(\mathcal{F})$ is the Rademacher complexity of function class \mathcal{F} on Ω given by

$$R_{N}(\mathcal{F}) = \mathbb{E}_{x_{1},...,x_{N}} \mathbb{E}_{\xi_{1},...,\xi_{N}} \left(\sup_{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \xi_{i} f(x_{i}) \right),$$
(42)

where x_i are drawn uniformly at random from Ω and ξ_i are uniformly random signs.

 nc	han	XII
 	nuo	

Uniform Bound on the Error (cont.)

The following results are obtained¹⁰

Lemma $R_N(\mathbb{D}), R_N(\nabla \mathbb{D}) \leq N^{-\frac{1}{2}}.$ (43)Theorem Let $J_N(u_{n,M,N}) = \min_{v \in \Sigma_{n,M}} J_N(v).$ (44)Then $\mathbb{E}_{x_1,\ldots,x_N}\left(\sup_{\|u\|_{\mathcal{K}_{\infty}}(\mathbb{D})\leq M}|J_N(u)-J(u)|\right)\lesssim MN^{-\frac{1}{2}},$ (45)and $\mathbb{E}_{x_1,...,x_N}(\|u_{n,M,N}-u\|^2_{H^m(\Omega)}) \lesssim M\left(N^{-\frac{1}{2}}+Mn^{-1}\right).$ (46)

¹⁰hong2021rademacher.

Jinchao Xu

Finite element methods

- 3 Neural network functions
- 4 Finite neuron method
- 5 Optimization algorithms
 - 6 Numerical examples
 - 7 Concluding remarks

Challenge: SGD or Adam

For the $ReLU^k$ shallow neural network, let

$$u_n = \arg \min_{v_n \in \Sigma_{n,M}(\mathbb{D})} \|v_n - u\|$$

be the solution trained by SGD or Adam, then it is extremely difficult to observe

$$\|u - u_n\| \le cn^{-\alpha} \tag{48}$$

for any $\alpha > 0$. Question:

Can we numerically observe (48) for large n?

(47)

Non-convergence for Adam etc for large n

Jinchao Xu

Math of NN

Our approach: Greedy Algorithms

Orthogonal greedy algorithm¹¹:

$$u_0 = 0, \ g_k = \arg\max_{g \in \mathbb{D}} \langle \nabla J_N(u_{k-1}), g \rangle, \ u_k = P_k u,$$
(49)

where P_k : orthogonal projection onto span{ $g_1, ..., g_k$ }.

Relaxed greedy algorithm

$$u_{0} = 0$$

$$g_{k} = \arg \max_{g \in \mathbb{D}} \langle \nabla J_{N}(u_{k-1}), g \rangle \qquad (50)$$

$$u_{k} = (1 - s_{k})u_{k-1} - Ms_{k}g.$$

¹¹devore1996some.

Jinchao Xu

Convergence Rates of the Orthogonal Greedy Algorithm

Known convergence rates of the orthogonal greedy algorithm:

- Orthogonal greedy algorithm¹²: $O(n^{-\frac{1}{2}})$
- Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries \mathbb{P}_k^d or \mathbb{F}_s^d ?

- Higher order approximation rates are possible!
- Can the orthogonal greedy algorithms attain them?

Convergence Rate of the Orthogonal Greedy Algorithm¹³

Theorem

Let the iterates f_n be given by the orthogonal greedy algorithm, where $f \in \mathcal{K}_1(\mathbb{P}^d_k)$. Then we have

$$\|u_n - u\| \lesssim n^{-\frac{1}{2} - \frac{2k+1}{2d}}.$$
(51)

The orthogonal greedy algorithm can train optimal neural networks!

13 siegel2021 improved.

Jinchao Xu

Optimization of the Discrete Energy: Greedy Algorithm

We solve the optimization problem

$$\min_{v \in \Sigma_{n,M}} J_N(v)$$

using the following relaxed greedy algorithm:

$$u_{0} = 0$$

$$g_{k} = \arg \max_{g \in \mathbb{D}} \langle \nabla J_{N}(u_{k-1}), g \rangle$$

$$u_{k} = (1 - s_{k})u_{k-1} - Ms_{k}g.$$
(53)

Theorem

 $||u_n||_{\mathcal{K}_1(\mathbb{D})} \leq M$ for all k and

$$J_{N}(u_{n}) - \min_{v \in \Sigma_{n,M}} J_{N}(v) \lesssim \frac{1}{n}.$$
(54)

1a0

(52)

Main Theorem¹⁴

Theorem

Assume that the true solution $u \in \mathcal{K}_1(\mathbb{D})$ satisfies $||u||_{\mathcal{K}_1(\mathbb{D})} \leq M$ and let the numerical solution $u_{n,M,N} \in \Sigma_{n,M}(\mathbb{D})$ be obtained by the relaxed greedy algorithm for n steps. Then we have

$$\mathbb{E}_{x_1,\ldots,x_N}(J(u_{n,M,N}) - J(u)) \le M \left[C_1(1 + \|f\|_{L^{\infty}(\Omega)}) N^{-\frac{1}{2}} + C_2 M n^{-1} \right].$$
(55)

and

$$\mathbb{E}_{x_1,...,x_N}(\|u_{n,M,N}-u\|_{H^m(\Omega)}^2) \le M\left[C_1'N^{-\frac{1}{2}} + C_2'Mn^{-1}\right],$$
(56)

where C'_1 and C'_2 depend only upon the dictionary and the differential operator.

¹⁴ hong2021 rademacher.

Remarks on the relaxed greedy algorithm

Question: How to solve

$$g_k = \arg\max_{g \in \mathbb{D}} \langle \nabla J_N(u_{k-1}), g \rangle$$

• Feasible for small d (d = 1, 2, 3).

A general approach proposed in book¹⁵.

- Challenge if *d* is large.
- We do not know any other method.

¹⁵gyorfi2002distribution.

Outline

- Finite element methods
- 3 Neural network functions
- 4 Finite neuron method
- 5 Optimization algorithms
- 6 Numerical examples
 - 7 Concluding remarks

NN with OGA for Data fitting

Example (2D approximation)

Consider approximating the following 2D function

 $u(x,y) = \cos(2\pi x)\cos(2\pi y), \quad (x,y) \in (0,1)^2.$

By fixing $||\omega|| = 1$ and $b \in [-2, 2]$, the convergence order of OGA is shown in Table below for ReLU^k neural networks. Theoretical order is shown in parenthesis.

n	$k = 1(n^{-1.25})$		$k = 2(n^{-1.75})$		$k = 3(n^{-2.25})$	
	$ u - u_n _{L^2}$	order	$ u - u_n _{L^2}$	order	$ u - u_n _{L^2}$	order
2	4.969e-01	-	4.998e-01	-	4.976e-01	-
4	4.883e-01	0.025	4.992e-01	0.002	4.957e-01	0.006
8	2.423e-01	1.011	3.233e-01	0.627	4.193e-01	0.242
16	6.632e-02	1.869	4.911e-02	2.719	1.099e-01	1.932
32	2.206e-02	1.588	1.688e-02	1.541	8.075e-03	3.767
64	1.060e-02	1.058	4.156e-03	2.022	1.149e-03	2.813
128	4.284e-03	1.306	9.773e-04	2.088	2.185e-04	2.395
256	1.703e-03	1.331	2.622e-04	1.898	4.718e-05	2.211

Table: Convergence order of OGA with *ReLU^k* activation function

200	haa	· • • •
110	l au	<u> </u>

Figure: Convergence order of OGA with *ReLU^k* activation function

 nc	nao	XII

NN with OGA for Numerical PDE

Example (1D elliptic equation)

Let us consider the 1D second order elliptic equation on $\Omega = (-1, 1)$:

$$-u'' + u = f, \text{ in } \Omega$$
(57)
$$\frac{\partial u}{\partial n} = 0, \text{ on } \partial \Omega.$$
(58)

with the source term $f = (1 + \pi^2) \cos(\pi x)$, then the analytical solution is $u(x) = \cos(\pi x)$. Let $\sigma = \text{ReLU}^2$ and the convergence rates are predicted theoretically.

n	$ u - u_n _{L^2}$	order	$ u - u_n _{H^1}$	order
2	1.312179e+00	-	3.123769e+00	-
4	3.809296e-01	1.78	1.795590e+00	0.80
8	7.900097e-03	5.59	1.239320e-01	3.86
16	6.253874e-04	3.66	2.431156e-02	2.35
32	7.539756e-05	3.05	5.645258e-03	2.11
64	8.098691e-06	3.22	1.351523e-03	2.06
128	9.655067e-07	3.07	3.200813e-04	2.08
256	1.209074e-07	3.00	7.899931e-05	2.02

Table: L^2 and H^1 numerical error of the OGA solution

OGA v.s. SGD and Adam

We take 40000 samples and take the learning rates to be 1e - 5 and 1e - 3 for SGD and Adam, respectively. It is difficult to observe any convergence order from the solutions of SGD or Adam:

N	00	GA	Ad	Adam		GD
	$ u - u_N _{L^2}$	$ u - u_N _{H^1}$	$ u - u_N _{L^2}$	$ u - u_N _{H^1}$	$ u - u_N _{L^2}$	$ u - u_N _{H^1}$
2	1.312e+00	3.124e+00	5.110e-01	7.913e-01	6.979e-01	1.959e+00
4	3.809e-01	1.796e+00	8.417e-03	1.378e-01	6.88 <mark>0e-0</mark> 1	1.940e+00
8	7.900e-03	1.239e-01	4.259e-03	5.364e-02	5.033e-01	1.136e+00
16	6.254e-04	2.431e-02	5.906e-03	9.033e-02	9.068e-02	4.124e-01
32	7.540e-05	5.645e-03	3.368e-03	4.244e-02	8.202e-02	3.969e-01
64	8.099e-06	1.352e-03	3.365e-03	2.279e-02	3.632e-02	2.273e-01
128	9.655e-07	3.201e-04	2.503e-03	2.250e-02	2.475e-02	2.427e-01
256	1.209e-07	7.900e-05	2.167e-03	2.307e-02	2.660e-02	2.417e-01
512	1.599e-08	2.033e-05	1.460e-03	1.034e-02	1.982e-02	2.306e-01

Table: Numerical results from different training methods.

Figure: OGA vs Adam

100	h 0 0	· · · · ·
	nau	AU

Math of NN

NN with OGA for 4th order PDE

Example (1D 4th-order equation)

We consider the 4th-order equation $(-\Delta)^2 u + u = f$ on (-1, 1) with

 $u(x) = (1-x)^4 (1+x)^4.$

Take $\sigma = \text{ReLU}^3$. The convergence orders with $\|\cdot\|_0$ and $\|\cdot\|_a$ errors are listed in the following table to confirm 4th order and 2nd order convergence, respectively.

n	$ u - u_n _{L^2}$	order	$ u - u_n _a$	order
2	8.762473e-01	-	6.062624e+00	-
4	9.891868e-01	-0.17	4.122220e+00	0.56
8	1.493237e-02	6.05	1.068900e+00	1.95
16	2.607811e-04	5.84	1.430653e-01	2.90
32	1.088935e-05	4.58	3.119824e-02	2.20
64	5.529557e-07	4.30	6.639040e-03	2.23
128	2.989261e-08	4.21	1.678663e-03	1.98
256	1.745507e-09	4.10	4.091674e-04	2.04

Table: The $\|\cdot\|_0$ and $\|\cdot\|_a$ errors of the OGA solution.

Numerical experiments of OGA

Example (2D 4th-order equation)

Next consider the $\|\cdot\|_0$ and $\|\cdot\|_a$ errors of OGA for 2D 4th-order equations on $\Omega = (-1, 1)^2$. Let the exact solution to be $u(x, y) = (x^2 - 1)^4 (y^2 - 1)^4$ to satisfy the Neumann boundary conditions. We have

n	$ u - u_n _{L^2}$	order	$ u - u_n _a$	order
2	6.527642e-01	-	7.926637e+00	-
4	7.859126e-01	-0.27	7.592753e+00	0.06
8	9.906278e-01	-0.33	6.295085e+00	0.27
16	8.215047e-01	0.27	4.002859e+00	0.65
32	1.512860e-01	2.44	1.446132e+00	1.47
64	7.206241e-02	1.07	4.746744e-01	1.61
128	2.258788e-02	1.67	1.808527e-01	1.39
256	4.696294e-03	2.27	6.970084e-02	1.38

Table: The convergence order with $\|\cdot\|_0$ and $\|\cdot\|_a$ errors by OGA.

Nonlinear problem: 2D

Example (A nonlinear 2D example)

Consider the following nonlinear 2D equation $-\Delta u + u^3 + u = f$ on $(0, 1)^2$ with $\partial u / \partial n = 0$. The analytical solution is $u = \cos(2\pi x) \cos(2\pi y)$ and the dictionary for RGA is taken as

 $\mathbb{D} = \{ \sigma(w_1 x + w_2 y + b) | (w_1, w_2, b) \in [-20, 20]^3 \}$

where $\sigma(x)$ is the sigmoid function. The convergence is considered on the approximating space where $||u||_{\mathcal{K}_1(\mathbb{D})} \leq M = 15$.

n	$ u - u_n _2$	order	$\ Du - Du_n\ _2$	order	$J(u_n) - J(u)$	order (n^{-1})
16	7.847118e-01	-	4.645084e+00	-	1.804723e+04	-
32	6.678914e-01	0.23	2.954645e+00	0.65	7.563223e+03	1.25
64	2.370456e-01	1.49	1.675239e+00	0.82	2.327894e+03	1.70
128	1.216064e-01	0.96	1.087479e+00	0.62	9.679782e+02	1.27
256	6.183769e-02	0.98	5.204851e-01	1.06	2.222200e+02	2.12
512	3.796748e-02	0.70	3.610805e-01	0.53	1.066532e+02	1.06
1024	2.687126e-02	0.50	2.110172e-01	0.77	3.661551e+01	1.54
2048	1.072196e-02	1.33	1.431628e-01	0.56	1.663444e+01	1.14

Table: Convergence order of RGA.

Nonlinear problem: 2D

Example (2D Poisson-Boltzmann equation)

Consider the PB equation $-\Delta u + \kappa \sinh(u) = f$ on the sphere $\{(x, y)|x^2 + y^2 \le 4\}$ with $\partial u / \partial n = 0$. The energy functional for this problem is

$$\mathcal{J}(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u|^2 + \kappa \cosh(u) - fu \right) dx,$$

which is a strictly convex and coercive energy as long as $\kappa > 0$. We set $\kappa = 1$ and consider the radially symmetric solution

$$u(x, y) = \cos(\frac{\pi}{2}\sqrt{x^2 + y^2})$$

n	$\ u - u_n\ _2$	order	$\ Du - Du_n\ _2$	order	$J(u_n) - J(u)$	order(n ⁻¹)
16	1.102900e+00	-	2.470451e+00	-	1.512249e+05	-
32	6.499420e-01	0.76	1.844984e+00	0.42	7.750018e+04	0.96
64	5.440200e-01	0.26	1.535850e+00	0.26	5.480476e+04	0.50
128	2.434633e-01	1.16	7.509427e-01	1.03	1.285071e+04	2.09
256	1.507433e-01	0.69	4.531679e-01	0.73	4.690009e+03	1.45
512	7.373288e-02	1.03	2.659362e-01	0.77	1.423244e+03	1.72
1024	2.948682e-02	1.32	1.646858e-01	0.69	5.362675e+02	1.41
2048	2.400795e-02	0.30	1.155901e-01	0.51	2.570714e+02	1.06

Table: Convergence order of RGA for the 2D Poisson-Boltzmann equation.

Outline

- 2) Finite element methods
- 3 Neural network functions
- 4 Finite neuron method
- 5 Optimization algorithms
- 6 Numerical examples
- 7 Concluding remarks

Concluding remarks

- As piecewise linear function classes, "linear finite elements" = "ReLU-DNN"; but they have utterly different structures
- Por sufficiently "smooth" function, linear finite neuron method has no curse of dimensionality, where linear finite element method does
 - Finite neuron method has "superconvergence" properties
- For high order PDEs, it is hard to construct conforming finite element method, but it is straightforward to construct conforming finite neuron method
- Finite neuron methods for PDEs are very difficult/expensive to realize
 - SGD-Adam is hardly "convergent"!
 - Greedy algorithm can lead to asymptotic approximation
 - More efficient optimization algorithms need to be developed
- Operation of numerical PDE methods based on neural networks:
 - Theoretical interesting, practically challenging
 - Potential advantages for high-dimensional problem
 - Machine learning for numerical PDEs (with or without neural networks): a rich research field!

References

- J. Xu, The Finite Neuron Method and Convergence Analysis, Commun. Comput. Phys., 28, pp. 1707-1745, (2020).
- J. W. Siegel and J. Xu, "High-Order Approximation Rates for Neural Networks with ReLU^k Activation Functions." arXiv preprint arXiv:2012.07205 (2020).
- J. W. Siegel and J. Xu, "Approximation Rates for Neural Networks with General Activation Functions." Neural Networks (2020).
- J. W. Siegel and J. Xu, "Optimal Approximation Rates and Entropy Bounds for ReLU^k Networks." arXiv preprint arXiv:2101.12365 (2021)
- L. Ma, J. W. Siegel and J. Xu, "Uniform Approximation Rates for Neural Networks with ReLU^k Activation Functions." (2021)
- Q. Hong, J. W. Siegel, and J. Xu, "A Priori Error Analysis of the Finite Neuron Method with Deterministic and Monte Carlo Quadrature." (2021)

Thank you!