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Preliminary on (quantitative) MRI

IWeierstrass Institute; 2Humboldt University of Berlin Online talk, December 3, 2021



Magnetic resonance imaging

Three major steps in the current routine of MRI experiment:

= Aligning magnetic nuclear spins in an applied constant magnetic field B,
= Perturbing this alignment via radio frequency (RF) pulse B;

= Applying magnetic gradient field (& to distinguish individual contributions

Alignment of Spins in a

Nt MRI System Block Diagram

magnetic moment M=0
1

i H
-+ 4

. - |
¥,  spin ¥
/ \

Yur R

B, field

Abbildung: MRI diagram (Published in Health and Medicine)
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Magnetic resonance imaging
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,All models are wrong, but some are usefu
George Box, 1976

' ®
) "_é'— . Signal Model
ﬁ&\ AP | P= <
-

Abbildung: Courtesy of Dr. Mariya Doneva (Philips)
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Bloch equations and simulation of MRI data

= Bloch equations (physical law behind the nuclear magnetic resonance):

om(x,t) ma(x,t) my(x,t) m.(x,t) — 1\ "
o) = mx,t) x Blxyt) - (et O B D 21

~v is a known parameter, B = By + By + (0,0, G - x). T1 and T5 are longitude
and transverse relaxation times, respectively, tissue (space) dependent.
= Some phrases in MRI:

= Flip angles a:: Characterized by the RF pulses B field a(t) =~ fot | B1(s)|ds.
= Repetition time T'R: The length of the time period from one pulse to the next pulse.

= Selecting a slice at z = 2
Y = PF(pTLyym(-, -, 2))-

P denotes a subsampling operator, 1, m := m, + tm,, and p is proton density.

This is an idealized mathematical description, e.g., coil sensitivity are ignored.
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Subsampling patterns

Cartesian subsampling pattern
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Qualitative MRI v.s. Quantitative MRI

Example of K-space data Example of qualitative MRI

Example of quantitative MRI parameters (17, 15, p)
Ideal T1 Ideal T2 Ideal Density
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Qualitative MRI v.s. Quantitative MRI

Example of K-space data Example of qualitative MRI

Example of quantitative MRI parameters (contains coil-sensitivity error p = p x C)

Ideal T1 Ideal T2 Ideal p-real Ideal p-imag

[
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Qualitative MRI v.s. Quantitative MRI

Qualitative MRI

= inverting under-sampled Fourier data, mature techniques
= visualizing amplitude of magnetization for diagnosis
= 17, T5 or p weighted images by adjusting By, B

= reconstruction can be done apart from the physics behind

Quantitative MRI

= techniques still in experimental stage
= precisely measure the magnetic and tissue parameters e.g. 6 = (11,75)*, and p
= imaging process is more time consuming

= physics (Bloch equations) explicitly entered into the reconstruction
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Mathematical understanding of
MRF-based methods

IWeierstrass Institute; 2Humboldt University of Berlin Online talk, December 3, 2021



Magnetic resonance fingerprinting (MRF)

The working flow of the original MRF 2:

= Create a dictionary Dic(C,,) of magnetizations m: Solve Bloch equations for a
variety of Ty, T5. Cq restricts (11, 1) to their natural range.

= Reconstruct X* := (XM ... X(1)) magnetization from the data:

X e argmin||PYFX —YD)2, 1=1,...,L.
X

Match the reconstructed magnetization to a dictionary element:

m* € argmin  S(m,,, X*)with X* = (X1 ... X)),

mxvyEDiC(Cad)

= Use look-up table to match (77, T5) to m*.

X ™ might be non-unigue and not optimal for under-sampled datal!
2D. Ma et al. Magnetic resonance fingerprinting, Nature, 495(187) (2013)
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Other dictionary-based methods

The BLIP algorithm ? applies projected gradient descent (also called projected
Landweber iteration) to approximate the following optimization problem:

min ||PFX — Y|?, (BLIP)

subject to X € R Dic(Cyy).

= BLIP gives better reconstruction of the magnetization in MRF.

= From a geometric point of view, Dic(Clq) is a high dimensional manifold.

= The Bloch manifold is nonconvex with respect to 6 = (77, T3) ", and the projection
IS ill-posed.

= Fineness of dictionary matters to the accuracy.

aM. Davies et al. A compressive sensing framework for magnetic resonance fingerprinting, SIAM J. Imag.
Sciences, 7(4) (2014)
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Other dictionary-based methods

The FLOR algorithm? uses a low rank penalty for the representation of the
magnetization in the dictionary:

min [|PFX - Y| + ARank(X), (FLOR)

subject to X € R Dic(Cyq).

= X is a vector spanned by only a few elements from Dic(C ).

= FLOR further optimizes the reconstructing and matching steps in MRF.
= Produces better results than BLIP in radial sub-sampling.

= Algorithm does not work well in Cartesian cases.

= Fineness of dictionary still matters.

2G. Mazor, L. Weizman, A. Tal, Y.C. Eldar. Low-rank magnetic resonance fingerprinting, Medical Physics, 45(9),
2018
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gMRI interpreted as coupled inverse problems

Dictionary based methods mostly approach gMRI problem from the following aspect:
Solving two coupled (nonlinear) operator equations

PF(pm) =g,

and

B(#) =m.

We have the following type of stability estimate?:

Theorem
Letm, m’ € Dic(Cyy), if ||m — m°|| < 6 for some positive § > 0, then there exist
constant C

10 —6°|| < Co.

2G. Dong, M. Hintermliller, K. Papafitsoros. Quantitative magnetic resonance imaging: From fingerprinting to
integrated physics-based models, SIAM J. Imag. Sciences, Vol. 12, No. 2, pp. 927-971, 2019.
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Integrated physics-based method
for gMRI
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Integrated physics-based method for gMRI

e Integrate the two inverse problems into a single non-linear operator equation?:

Qp,0) =y,
where
Q(p,0) == PF(pT,,m(0)) and [p(r);0(r)] € Coq := [RT; Cyy] forallr € .

e Time continuous function m(#) practically replaced by discrete dynamics M (6)
e.g. Inversion Recovery balanced Steady-State Free Precession.

e Some important properties are proven:
= M : [L®(Q)]? — [L*(Q2))° is Fréchet differentiable.
= M(C\y) is a non-convex set.
= Q : [L>(Q)]? — [L*(K)]’ is Fréchet differentiable.

2@G. Dong, M. Hintermiiller, K. Papafitsoros. Quantitative magnetic resonance imaging: From fingerprinting to
integrated physics-based models, SIAM J. Imag. Sciences, Vol. 12, No. 2, pp. 927-971, 2019.
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Time discrete Bloch dynamics

In practice, discrete dynamic sequences M = (Ml)le (e.g. Inversion Recovery
balanced Steady-State Free Precession flip angle sequence patterns)

M, E\(TRy,0)Ry, Ry(an) R My 1 + Ey(T R, 0) M,
M,
My

e T2 0 0

(0,0,1)7,
El(TRl,9)< 0 B ) Eg(TR;,@)z(l—eTll)

—M, = (0,0,-1)".
0
cos(¢y)  sin(¢y) 0 1 0 0
Ry, = ( —Silol(qbg) Cos(gqﬁg) (1)> and R,(ay) = (O cos(ay)  sin(ay) ) :

where

0 —sin(ay) cos(ay)

M, has a closed form:

l -1 l
M, = (H El(TRk,H)R(ozk)> My + By(T Ry, 0)M, + (EQ(TRk,Q) I1 El(TRj,H)R(aj)) M..

k=1 j=k+1

vvvvvvv
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Gauss-Newton iteration

e Denote u = (11, Ts, p)'. Consider first order Taylor expansion:

Q<un+1> = Q(“R) - Q/<un> (un+1 — un) — 49,

suggests a projected Gauss-Newton iteration:
gn — g — Q(un> + Q/<un>una
Un41 — <Q/)T(un>gn = ((Q,<un)>—|—@,<un>)_ (Q/<un>>—|—gna

Up+1 = Péadvn+1-

where (Fs v),(r) =

Converge superlinearly for proper initial values, but sensitive to noise.
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A Levenberg-Marquardt method

e An estimation for u, i € [L®(Q)], and Q : [L=(Q)]? — ([LA(K)]))":
[Q(u+h) — Qu) — Q/<U>h||([L2(K)]2)L =0 (Hh”[L?(Q)]?’) '

e |-M is a kind of regularization for the case of noisy and under-sampled data.

Key steps of the algorithm (Note now in Hilbert space ([L*(Q)]*)):

= |nitialization: using BLIP algorithm with a coarse dictionary.
= A projected Levenberg-Marquardt iteration:

gg = 96 — Q(uy)

h5 — argmm 1Q (un)h — gn||2 L+ )\thH[QL?(Q)P

L2(K)]?)
U1 = g (un+h5)

with updated parameter )\, = max{\o8", i}, where 3 € (0,1), and 1, > 0.
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Numerical results on gMRI-Cartesian subsampling case

Solution of BLIP algorithm
T1 by BLIP T2 by BLIP density by BLIP 200
500

400 150

300
100
200

100

Solution of proposed method
T1 with proposed method T2 with proposed method Density with proposed method 100
500
80
400
60
300
40
20
0

200

100
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Numerical results on gMRI-Cartesian subsampling case

Relative error map from BLIP algorithm
T1 Error Rate:0.086679 T2 Error Rate:0.16275 o Error Rate:0.38573
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Numerical results on gMRI-Radial subsampling case

Solution of FLOR algorithm
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Numerical results on gMRI-Radial subsampling case

Relative error map from FLOR algorithm

T1 Error Rate:0.12018 T2 Error Rate:0.061226 real(p) Error Rate:0.055711

1 1 1
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imag(p) Error Rate:0.076428

Relative error map from proposed method

T1 Error Rate:0.12517 T2 Error Rate:0.018627 real(p) Error Rate:0.0064404 imag(p) Error Rate:0.006113
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Using learning-informed physical
models
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Optimization with (learning-informed) physics-constraints '

e A general physics-based inverse (imaging) problem:

Ay=g¢g, given g€ H
where e(y,u) =0 for (y,u) €Y x U and u € Cyy

Let y = II(u) be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch
equations, u = 0 = (11,15, p)).

e We study the following generic problem:

inimi ! 9112 v 9
minimize —||Ay — |2
(y,u)e(YxU) 2“ y—49 HH 2” HU
subjectto  e(y,u) = 0,

u € Cyy.

'G. Dong, M. Hintermiiller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its
applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.

25/41 Quantitative Imaging % i é



Optimization with (learning-informed) physics-constraints '

e A general physics-based inverse (imaging) problem:

Ay=g¢g, given g€ H
where e(y,u) =0 for (y,u) €Y x U and u € Cyy

Let y = II(u) be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch
equations, u = 0 = (11,15, p)).

e We study the following generic problem:

1 Q
minimize.— | ATI(u) — | + 5 |[ul}} = 7 ()

U

subjectto  u € Cyy.

'G. Dong, M. Hintermiiller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its
applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.

25/41 Quantitative Imaging % i é



Optimization with (learning-informed) physics-constraints '

e A general physics-based inverse (imaging) problem:

Ay=g¢g, given g€ H
where e(y,u) =0 for (y,u) €Y x U and u € Cyy

Let y = II(u) be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch
equations, u = 0 = (11,15, p)).

e We study the following generic problem:

L 1 Q
minimize §\|AHN(U) —gll% + §||U||2U =: Iy (u),

subjectto  u € Cyy.

'G. Dong, M. Hintermiiller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its
applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.
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Artificial Neural Network

Hidden Hidden

Input Output
layer layer  layer layer
1 2

(2)
BV o
— Rl hy? Nl
X9 ?1) h;(f) N- 9
s e

A fully connected multi-layer feedforward ANN.

From one layer to the next: connected by affine mapping and
activation function

h=o0(z)=0c(Wx+Db).
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Universal approximation theorem for ANNs?

ANNs have been very successful approximators for functions f : () — R",
defined on bounded () C R™.

Theorem (function value approximation)

A standard multi-layer feedforward network with a continuous activation
function can uniformly approximate any continuous function to any degree of
accuracy if and only if its activation function is not a polynomial.

Theorem (derivative approximation)

There exists a neural network which can approximate both the function value
and the derivatives of f uniformly to any degree of accuracy if the activation
function is continuously differentiable and is not a polynomial.

2Pinkus, Approximation theory of the MLP model in neural networks. Acta Numerica, 1999.
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Activation functions of ANNs

Examples of smooth activation functions:

e Sigmoid: e.g., tansig (0(z) = 7=), logsig (0(z) = =), arctan

(0(z) = arctan(z)), etc.

e Probability functions: e.g., softmax (o;(z) = #)
J

Examples of nonsmooth activation functions:
e RelU: Rectified Linear Unit (c(z) = max(0, 2))

Important: Choosing smooth vs. nonsmooth activation functions
should respect prior information on to be approximated object and
has numerous implications in optimization.
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Remark on neural network approximation

NNs approximate an objective f in different settings

Examples

1. f: Q C R™ — R", with finite m and n
Universal approximation theorem

2. f K C By — R", where B; is some Banach space
Under-development (mostly convolutionary NNs)

3. f:Q CR"™ — By, where BB, is some Banach space
Under-development (many different methods)

= (Generalized)
Regression

= (Image)
Classification

= Solving (partial)
differential equations

4. f - K C By — By, (By)?_, can be infinite dimensional ® Operator learning

Under-development (very few still)

Except for case 1, mathematical understanding of cases 2—4 still mostly in progress.

Main difficulty: Compactness condition problematic.
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A diagram of the proposed general framework

Input {u;}lY,

\

A general optimization framework

Learning-informed
model ming||Ay — glF + 5 llullZ

(Partially) unknown

Physical process
y =1I(v)

v

Output {y;};,

(y,u)

y = Hn(u) subject to y =TIl (u), u € Cuq

Fundamental questions:

= Conditions for well-posedness of learned physical model and universal
approximation property of 11 ~ II.

= Approximation properties of optimizers associated to learning-informed models vs.
those related to original physics-based models.
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Some analytical aspects
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Existence of solutions

Denote () := AII (or All) the reduced operator.

Theorem ’
Suppose that () is weakly-weakly sequentially closed, i.e., if u,, — u and

Q(uy) A g, then g = Q(u). Then the optimization problem admits a solution
ueU. A

In the special case when C, is a bounded set of a subspace U compactly
embedded into U, then strong-weak sequential closedness of () is sufficient to
guarantee existence of a solution.

= In many PDE models, regularity of the resp. solution helps the weak-weak
sequential closedness condition of the control-to-state map to be satisfied.

= While in imaging applications (inverse problems, more generally) regularization
usually plays a role similar to U .
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Convergence under operator perturbations

Let ), ;== All;, be the reduced learning-informed operators.

Theorem
Let () and (),, forn € N be weakly sequentially closed operators, and

sucp 1Q(u) — Qn(u)||lg <€, for €,]0.

Suppose (un)neN Is a sequence of minimizers associated to the optimization
problems with reduced operator (),, for alln € N.
Then, there is the strong convergence (up to a sub-sequence)

u, = u in U, and Qp(u,) — Q(u) in H, as n — oo,

where u is a minimizer of the original optimization problem.

33/41 Quantitative Imaging

vvvvvvv



Convergence rates

Denote Ly and L; the Lipschitz constants associated to () and ())’, respectively,
where ()" is the Fréchet derivative of ), and 1, := [|Q" — Q|| /(. 11)-

Theorem
Under smallness of L, Ly, the solutions wu,, converge to u at the following rate

lun —ully = O (Loen + [|Q(w) = gl 7 1m)

Theorem (when J'(u) = 0)

Suppose the Lipschitz constant L, satisfies

Ly ||Q(u) — gl <
If 7'(u) = 0, then for sufficiently large n. € N we have the following error bound

n — ally = O (¢ 2 Q) gué) |
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Application to gMRI
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gMRI as a ,control problem”

qMRI fits the general optimization framework:

" L] L 1 a
minimize ~||PF(y) — |3 + =|lull?,
() 2 2

subject to

ot T Ty 1
y<0> — Py,
u € Cyy.

= The goal is to estimate the physical parameters u = (p, 11, T5)

O (1) — () x vBI(t) — (yl(t) yalt) yslt) = pme) b=ty ...
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gMRI as a ,control problem”

qMRI fits the general optimization framework:

o] «
minimize ~||PF(y) — |3 + =|lull?,
(y,u) 2 2
subject to
Y= N(“)?
u & Cad.

= The goal is to estimate the physical parameters u = (p, 11, T5)

= ANNs N\ approximate the parameter-to-solution map (Nemytskii type):

(pa Tla TQ) — (ytla - 7ytL)
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Universal approximation of learning-informed Bloch operator

Both IT and IIys = N are operators of Nemytskii type in the gMRI case.

Theorem
The operatorI1 : C,q C [L(Q)T]? — [(L>(Q))%]Y is Lipschitz continuous, and
Fréchet differentiable with locally Lipschitz derivative.

Theorem
Letu = (Ty, T, p)" € Cuq. Then for arbitrary small e > 0 and e; > 0, there always

exist neural network approximations so that
T () — TT(w) [ [ ysr < €
and
/ /
[TTpr(w) — 11 (u>||£([L2(Q)]3,[L°°(Q)3]L) < €1,
are satisfied.
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A sequential quadratic programming (SQP) algorithm

Define | N
Tow) i= S| PFN @) = g1 + Sl

The derivative J5/(u) has an explicit form

(PN (T, o)), N (T, To) ' FX(F(pN(T1, Ty)) — g) + a(ld — ATy, Th, p) .

Every QP-step solves

1
minimize (T (ur), h)o+ v + §<Hk(uk)h, hyy-y overh €U
st. ur+ h € Cu,

where H(uy) is a pos.-def. approx. of the Hessian of Jy at uy € Cuq:
(pN'(Th, T2))*, N(T1, T3)) ' F* F(p(N'(T1, T2)), N (T3, T2)) + oo(ld — A).

38/41 Quantitative Imaging % i é

vvvvvvv



Numerical results on synthetic data

Solutions using the proposed learning-informed method
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Numerical results on synthetic data

Error map from the proposed learning-informed method

T1 Error Rate:0.084323 o T2 Error Rate:0.058225 o Density Rate:0.0034495

09 09 09

Error map from previous physms integrated method

T1 Error Rate:0.10837 T2 Error Rate:0.10564 {p) Error Rate:0.0090081

1 —/l
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Summary

= Mathematical understanding of MRF type methods for gMRI.
= Integrated physics-based model for gMRI.
= Learning-informed model for explicit representations of physical operators.

= Mathematical analysis for the proposed methods and robust numerical algorithms.

Thank you for your attention!
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