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Magnetic resonance imaging

Three major steps in the current routine of MRI experiment:

Aligning magnetic nuclear spins in an applied constant magnetic field B0

Perturbing this alignment via radio frequency (RF) pulse B1

Applying magnetic gradient field G to distinguish individual contributions

Abbildung: MRI diagram (Published in Health and Medicine)

Abbildung: Courtesy of Dr. Mariya Doneva (Philips)
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Magnetic resonance imaging

Abbildung: Courtesy of Dr. Mariya Doneva (Philips)
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Bloch equations and simulation of MRI data

Bloch equations (physical law behind the nuclear magnetic resonance):

∂m(x, t)
∂t

= γm(x, t)×B(x, t)−
(
mx(x, t)
T2

,
my(x, t)
T2

,
mz(x, t)− 1

T1

)>
.

γ is a known parameter, B = B0 + B1 + (0, 0, G · x). T1 and T2 are longitude
and transverse relaxation times, respectively, tissue (space) dependent.
Some phrases in MRI:

Flip angles α: Characterized by the RF pulses B1 field α(t) = γ
∫ t

0 |B1(s)|ds.
Repetition time TR: The length of the time period from one pulse to the next pulse.

Selecting a slice at z = z0

Y =: PF(ρTxym(·, ·, z0)).
P denotes a subsampling operator, Txym := mx + imy, and ρ is proton density.

This is an idealized mathematical description, e.g., coil sensitivity are ignored.
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Subsampling patterns

Cartesian subsampling pattern

Radial subsampling pattern
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Qualitative MRI v.s. Quantitative MRI

Example of K-space data Example of qualitative MRI

from under-sampled data

Example of quantitative MRI parameters (T1, T2, ρ)
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Qualitative MRI v.s. Quantitative MRI

Example of K-space data Example of qualitative MRI

from under-sampled data

Example of quantitative MRI parameters (contains coil-sensitivity error ρ̂ = ρ ∗ C)
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Qualitative MRI v.s. Quantitative MRI

Qualitative MRI

inverting under-sampled Fourier data, mature techniques

visualizing amplitude of magnetization for diagnosis

T1, T2 or ρ weighted images by adjusting B0, B1

reconstruction can be done apart from the physics behind

Quantitative MRI

techniques still in experimental stage

precisely measure the magnetic and tissue parameters e.g. θ = (T1, T2)T , and ρ

imaging process is more time consuming

physics (Bloch equations) explicitly entered into the reconstruction
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Mathematical understanding of
MRF-based methods
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Magnetic resonance fingerprinting (MRF)

The working flow of the original MRF a:

Create a dictionary Dic(Cad) of magnetizations m: Solve Bloch equations for a
variety of T1, T2. Cad restricts (T1, T2) to their natural range.

Reconstruct X∗ := (X(1), . . . , X(L)) magnetization from the data:

X(l) ∈ argmin
X
‖P (l)FX − Y (l)‖2

2, l = 1, . . . , L.

Match the reconstructed magnetization to a dictionary element:

m∗ ∈ argmin
mx,y∈Dic(Cad)

S(mx,y, X
∗) with X∗ = (X(1), . . . , X(L)).

Use look-up table to match (T1, T2) to m∗.

X∗ might be non-unique and not optimal for under-sampled data!
aD. Ma et al. Magnetic resonance fingerprinting, Nature, 495(187) (2013)
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Other dictionary-based methods

The BLIP algorithm a applies projected gradient descent (also called projected
Landweber iteration) to approximate the following optimization problem:

min
X
‖PFX − Y ‖2, (BLIP)

subject to X ∈ R+Dic(Cad).

BLIP gives better reconstruction of the magnetization in MRF.

From a geometric point of view, Dic(Cad) is a high dimensional manifold.

The Bloch manifold is nonconvex with respect to θ = (T1, T2)>, and the projection
is ill-posed.

Fineness of dictionary matters to the accuracy.
aM. Davies et al. A compressive sensing framework for magnetic resonance fingerprinting, SIAM J. Imag.

Sciences, 7(4) (2014)
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Other dictionary-based methods

The FLOR algorithma uses a low rank penalty for the representation of the
magnetization in the dictionary:

min
X
‖PFX − Y ‖2 + λRank(X), (FLOR)

subject to X ∈ R+Dic(Cad).

X is a vector spanned by only a few elements from Dic(Cad).
FLOR further optimizes the reconstructing and matching steps in MRF.

Produces better results than BLIP in radial sub-sampling.

Algorithm does not work well in Cartesian cases.

Fineness of dictionary still matters.
aG. Mazor, L. Weizman, A. Tal, Y.C. Eldar. Low-rank magnetic resonance fingerprinting, Medical Physics, 45(9),

2018
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qMRI interpreted as coupled inverse problems

Dictionary based methods mostly approach qMRI problem from the following aspect:
Solving two coupled (nonlinear) operator equations

PF (ρm) = g,

and
B(θ) = m.

We have the following type of stability estimatea:

Theorem
Let m,mδ ∈ Dic(Cad), if ‖m−mδ‖ ≤ δ for some positive δ > 0, then there exist
constant C

‖θ − θδ‖ ≤ Cδ.
aG. Dong, M. Hintermüller, K. Papafitsoros. Quantitative magnetic resonance imaging: From fingerprinting to

integrated physics-based models, SIAM J. Imag. Sciences, Vol. 12, No. 2, pp. 927–971, 2019.
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Integrated physics-based method
for qMRI
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Integrated physics-based method for qMRI

• Integrate the two inverse problems into a single non-linear operator equationa:

Q(ρ, θ) = g,

where

Q(ρ, θ) := PF(ρTx,ym(θ)) and [ρ(r); θ(r)] ∈ Cad := [R+;Cad] for all r ∈ Ω.
• Time continuous function m(θ) practically replaced by discrete dynamics M(θ)
e.g. Inversion Recovery balanced Steady-State Free Precession.

• Some important properties are proven:

M : [L∞(Ω)]2 → [L2(Ω)]3 is Fréchet differentiable.

M(Cad) is a non-convex set.

Q : [L∞(Ω)]3 → [L2(K)]3 is Fréchet differentiable.

aG. Dong, M. Hintermüller, K. Papafitsoros. Quantitative magnetic resonance imaging: From fingerprinting to
integrated physics-based models, SIAM J. Imag. Sciences, Vol. 12, No. 2, pp. 927–971, 2019.
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Time discrete Bloch dynamics

In practice, discrete dynamic sequences M = (Ml)Ll=1 (e.g. Inversion Recovery
balanced Steady-State Free Precession flip angle sequence patterns) Ml = E1(TRl, θ)Rφl

Rx(αl)R>φl
Ml−1 + E2(TRl, θ)Me,

Me = (0, 0, 1)>,
M0 = −Me = (0, 0,−1)>.

where

E1(TRl, θ) =

 e−
T Rl
T2 0 0

0 e−
T Rl
T2 0

0 0 e−
T Rl
T1

 , E2(TRl, θ) =
(

1− e−
T Rl
T1

)

Rφ`
=
( cos(φ`) sin(φ`) 0
− sin(φ`) cos(φ`) 0

0 0 1

)
and Rx(α`) =

( 1 0 0
0 cos(α`) sin(α`)
0 − sin(α`) cos(α`)

)
.

Ml has a closed form:

Ml =
(

l∏
k=1

E1(TRk, θ)R(αk)
)
M0 + E2(TRl, θ)Me +

l−1∑
k=1

E2(TRk, θ)
l∏

j=k+1

E1(TRj, θ)R(αj)

Me.
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Gauss-Newton iteration

• Denote u = (T1, T2, ρ)>. Consider first order Taylor expansion:

Q(un+1) ' Q(un) + Q′(un) (un+1 − un) = g,

suggests a projected Gauss-Newton iteration:

gn = g −Q(un) + Q′(un)un,
vn+1 = (Q′)†(un)gn :=

(
(Q′(un))>Q′(un)

)−1 (Q′(un))>gn,
un+1 = PC̃advn+1.

where (PC̃adv)p(r) =


Cp for vp(r) ≤ Cp

vp(r) for Cp < vp(r) < Cp

Cp for Cp ≤ vp(r)

Converge superlinearly for proper initial values, but sensitive to noise.
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A Levenberg-Marquardt method

• An estimation for u, h ∈ [L∞(Ω)]3, and Q : [L∞(Ω)]3 → ([L2(K)]2)L:

‖Q(u + h)−Q(u)−Q′(u)h‖([L2(K)]2)L = o
(
‖h‖[L2(Ω)]3

)
.

• L-M is a kind of regularization for the case of noisy and under-sampled data.

Key steps of the algorithm (Note now in Hilbert space ([L2(Ω)]3)):

Initialization: using BLIP algorithm with a coarse dictionary.

A projected Levenberg-Marquardt iteration:

g̃δn = gδ −Q(un)
hδn = argmin

h
‖Q′(un)h− g̃δn‖2

([L2(K)]2)L + λn‖h‖2
[L2(Ω)]3

un+1 = PC̃ad(un + hδn)
with updated parameter λn = max{λ0β

n, µn}, where β ∈ (0, 1), and µn ≥ 0.
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Numerical results on qMRI–Cartesian subsampling case

Solution of BLIP algorithm
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Numerical results on qMRI–Cartesian subsampling case

Relative error map from BLIP algorithm
T1 Error Rate:0.086679
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Numerical results on qMRI–Radial subsampling case

Solution of FLOR algorithm
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Numerical results on qMRI–Radial subsampling case

Relative error map from FLOR algorithm
T1 Error Rate:0.12018
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Optimization with (learning-informed) physics-constraints 1

• A general physics-based inverse (imaging) problem:

Ay = g, given g ∈ H
where e(y, u) = 0 for (y, u) ∈ Y × U and u ∈ Cad

Let y = Π(u) be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch
equations, u = θ = (T1, T2, ρ)).

•We study the following generic problem:

minimize
(y,u)∈(Y×U)

1
2
‖Ay − gδ‖2

H + α

2
‖u‖2

U ,

subject to e(y, u) = 0,
u ∈ Cad.

1G. Dong, M. Hintermüller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its
applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.
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Optimization with (learning-informed) physics-constraints 1

• A general physics-based inverse (imaging) problem:

Ay = g, given g ∈ H
where e(y, u) = 0 for (y, u) ∈ Y × U and u ∈ Cad

Let y = Π(u) be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch
equations, u = θ = (T1, T2, ρ)).

•We study the following generic problem:

minimize
u

1
2
‖AΠ(u)− gδ‖2

H + α

2
‖u‖2

U =: J (u),
subject to u ∈ Cad.

1G. Dong, M. Hintermüller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its
applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.
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Optimization with (learning-informed) physics-constraints 1

• A general physics-based inverse (imaging) problem:

Ay = g, given g ∈ H
where e(y, u) = 0 for (y, u) ∈ Y × U and u ∈ Cad

Let y = Π(u) be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch
equations, u = θ = (T1, T2, ρ)).

•We study the following generic problem:

minimize
u

1
2
‖AΠN (u)− g‖2

H + α

2
‖u‖2

U =: JN (u),
subject to u ∈ Cad.

1G. Dong, M. Hintermüller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its
applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.
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Artificial Neural Network
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A fully connected multi-layer feedforward ANN.

From one layer to the next: connected by affine mapping and
activation function

h = σ(z) = σ(Wx + b).
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Universal approximation theorem for ANNs2

ANNs have been very successful approximators for functions f : Ω → Rn,
defined on bounded Ω ⊂ Rm.

Theorem (function value approximation)
A standard multi-layer feedforward network with a continuous activation
function can uniformly approximate any continuous function to any degree of
accuracy if and only if its activation function is not a polynomial.

Theorem (derivative approximation)
There exists a neural network which can approximate both the function value
and the derivatives of f uniformly to any degree of accuracy if the activation
function is continuously differentiable and is not a polynomial.

2Pinkus, Approximation theory of the MLP model in neural networks. Acta Numerica, 1999.
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Activation functions of ANNs

Examples of smooth activation functions:

• Sigmoid: e.g., tansig (σ(z) = ez−e−z
ez+e−z ), logsig (σ(z) = 1

1+e−z )), arctan
(σ(z) = arctan(z)), etc.

• Probability functions: e.g., softmax (σi(z) = e−zi∑
j e
−zj )

Examples of nonsmooth activation functions:

• ReLU: Rectified Linear Unit (σ(z) = max(0, z))

Important: Choosing smooth vs. nonsmooth activation functions
should respect prior information on to be approximated object and
has numerous implications in optimization.

28/41 Quantitative Imaging



Remark on neural network approximation

NNs approximate an objective f in different settings

1. f : Ω ⊂ Rm → Rn, with finite m and n
Universal approximation theorem

2. f : K ⊂ B1 → Rn, where B1 is some Banach space
Under-development (mostly convolutionary NNs)

3. f : Ω ⊂ Rm → B2, where B2 is some Banach space
Under-development (many different methods)

4. f : K ⊂ B1 → B2, (Bk)2
k=1 can be infinite dimensional

Under-development (very few still)

Examples

(Generalized)
Regression

(Image)
Classification

Solving (partial)
differential equations

Operator learning

Except for case 1, mathematical understanding of cases 2–4 still mostly in progress.

Main difficulty: Compactness condition problematic.
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A diagram of the proposed general framework

Input {ui}Ni=1

Output {yi}Ni=1

(Partially) unknown

Physical process

y = Π(u)

Learning-informed

model

y = ΠN (u)

A general optimization framework

min
(y,u)

1
2‖Ay − g‖2H + α

2 ‖u‖2U

subject to y = ΠN (u), u ∈ Cad

2

Fundamental questions:

Conditions for well-posedness of learned physical model and universal
approximation property of ΠN ∼ Π.

Approximation properties of optimizers associated to learning-informed models vs.
those related to original physics-based models.
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Some analytical aspects
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Existence of solutions

Denote Q := AΠ (or AΠN ) the reduced operator.

Theorem
Suppose that Q is weakly-weakly sequentially closed, i.e., if un

U
⇀ u and

Q(un) H
⇀ ḡ, then ḡ = Q(u). Then the optimization problem admits a solution

ū ∈ U .
In the special case when Cad is a bounded set of a subspace Û compactly
embedded into U , then strong-weak sequential closedness of Q is sufficient to
guarantee existence of a solution.

In many PDE models, regularity of the resp. solution helps the weak-weak
sequential closedness condition of the control-to-state map to be satisfied.

While in imaging applications (inverse problems, more generally) regularization
usually plays a role similar to Û .
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Convergence under operator perturbations

Let Qn := AΠNn be the reduced learning-informed operators.

Theorem
Let Q and Qn for n ∈ N be weakly sequentially closed operators, and

sup
u∈Cad
‖Q(u)−Qn(u)‖H ≤ εn, for εn ↓ 0.

Suppose (un)n∈N is a sequence of minimizers associated to the optimization
problems with reduced operator Qn for all n ∈ N.
Then, there is the strong convergence (up to a sub-sequence)

un → ū in U, and Qn(un)→ Q(ū) in H, as n→∞,
where ū is a minimizer of the original optimization problem.
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Convergence rates

Denote L0 and L1 the Lipschitz constants associated to Q and Q′, respectively,
where Q′ is the Fréchet derivative of Q, and ηn := ‖Q′ −Q′n‖L(U,H).

Theorem
Under smallness of L0, L1, the solutions un converge to ū at the following rate

‖un − ū‖U = O (L0εn + ‖Q(ū)− g‖H ηn) .

Theorem (when J ′(ū) = 0)
Suppose the Lipschitz constant L1 satisfies

L1 ‖Q(ū)− g‖H < α.

If J ′(ū) = 0, then for sufficiently large n ∈ N we have the following error bound

‖un − ū‖U = O
(√

ε2n + 2 ‖Q(ū)− g‖2
H

)
.
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Application to qMRI
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qMRI as a „control problem”

qMRI fits the general optimization framework:

minimize
(y,u)

1
2
‖PF(y)− gδ‖2

H + α

2
‖u‖2

U ,

subject to

∂y

∂t
(t) = y(t)× γB(t)−

(
y1(t)
T2

,
y2(t)
T2

,
y3(t)− ρme

T1

)
, t = t1, . . . , tL,

y(0) = ρm0,
u ∈ Cad.

The goal is to estimate the physical parameters u = (ρ, T1, T2)

ANNsN approximate the parameter-to-solution map (Nemytskii type):

(ρ, T1, T2) 7→ (yt1, . . . , ytL)
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qMRI fits the general optimization framework:

minimize
(y,u)

1
2
‖PF(y)− gδ‖2

H + α

2
‖u‖2

U ,

subject to

y = N (u),
u ∈ Cad.

The goal is to estimate the physical parameters u = (ρ, T1, T2)
ANNsN approximate the parameter-to-solution map (Nemytskii type):

(ρ, T1, T2) 7→ (yt1, . . . , ytL)
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Universal approximation of learning-informed Bloch operator

Both Π and ΠN = N are operators of Nemytskii type in the qMRI case.

Theorem
The operator Π : Cad ⊂ [L∞ε (Ω)+]3 → [(L∞(Ω))3]L is Lipschitz continuous, and
Fréchet differentiable with locally Lipschitz derivative.

Theorem
Let u = (T1, T2, ρ)> ∈ Cad. Then for arbitrary small ε > 0 and ε1 > 0, there always
exist neural network approximations so that

‖ΠN (u)− Π(u)‖[L∞(Ω)3]L ≤ ε,

and
‖Π′N (u)− Π′(u)‖L([L2(Ω)]3,[L∞(Ω)3]L) ≤ ε1,

are satisfied.
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A sequential quadratic programming (SQP) algorithm

Define

JN (u) := 1
2
‖PF(N (u))− gδ‖2

H + α

2
‖u‖2

U .

The derivative J ′N (u) has an explicit form

(ρ(N ′(T1, T2))∗,N (T1, T2))>F∗(F(ρN (T1, T2))− g) + α(Id−∆)(T1, T2, ρ)>.

Every QP-step solves

minimize 〈J ′N (uk), h〉U∗,U + 1
2
〈Hk(uk)h, h〉U∗,U over h ∈ U

s.t. uk + h ∈ Cad,
where Hk(uk) is a pos.-def. approx. of the Hessian of JN at uk ∈ Cad:

(ρ(N ′(T1, T2))∗,N (T1, T2))>F∗F(ρ(N ′(T1, T2)),N (T1, T2)) + α(Id−∆).
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Numerical results on synthetic data

Solutions using the proposed learning-informed method

Solutions using previous physics-integrated method
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Numerical results on synthetic data

Error map from the proposed learning-informed method

Error map from previous physics-integrated method
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Summary

Mathematical understanding of MRF type methods for qMRI.

Integrated physics-based model for qMRI.

Learning-informed model for explicit representations of physical operators.

Mathematical analysis for the proposed methods and robust numerical algorithms.

Thank you for your attention!
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