# Quantitative Imaging: Physics integrated and machine learning based models in MRI



<sup>1</sup>Weierstrass Institute; <sup>2</sup>Humboldt University of Berlin

## Content

- 1. Preliminary on (quantitative) MRI
- 2. Mathematical understanding of MRF-based methods
- 3. Integrated physics-based method for qMRI
- 4. Using learning-informed physical models
  - 4.1 Some analytical aspects
  - 4.2 Application to qMRI





# Preliminary on (quantitative) MRI

Three major steps in the current routine of MRI experiment:

- Aligning magnetic nuclear spins in an applied constant magnetic field  $B_0$
- Perturbing this alignment via radio frequency (RF) pulse  $B_1$
- Applying magnetic gradient field G to distinguish individual contributions



Abbildung: MRI diagram (Published in Health and Medicine)







Abbildung: Courtesy of Dr. Mariya Doneva (Philips)



Bloch equations (physical law behind the nuclear magnetic resonance):

$$\frac{\partial m(\mathbf{x},t)}{\partial t} = \gamma m(\mathbf{x},t) \times B(\mathbf{x},t) - \left(\frac{m_x(\mathbf{x},t)}{T_2}, \frac{m_y(\mathbf{x},t)}{T_2}, \frac{m_z(\mathbf{x},t)-1}{T_1}\right)^{\top}$$

 $\gamma$  is a known parameter,  $B = B_0 + B_1 + (0, 0, G \cdot \mathbf{x})$ .  $T_1$  and  $T_2$  are longitude and transverse relaxation times, respectively, tissue (space) dependent.

#### Some phrases in MRI:

- Flip angles  $\alpha$ : Characterized by the RF pulses  $B_1$  field  $\alpha(t) = \gamma \int_0^t |B_1(s)| ds$ .
- Repetition time TR: The length of the time period from one pulse to the next pulse.
- Selecting a slice at  $z = z_0$

$$Y =: P\mathcal{F}(\rho T_{xy}m(\cdot, \cdot, z_0)).$$

P denotes a subsampling operator,  $T_{xy}m := m_x + im_y$ , and  $\rho$  is proton density.

#### This is an idealized mathematical description, e.g., coil sensitivity are ignored.





## Subsampling patterns

#### Cartesian subsampling pattern



#### Radial subsampling pattern









#### Example of quantitative MRI parameters ( $T_1$ , $T_2$ , $\rho$ )









Example of quantitative MRI parameters (contains coil-sensitivity error  $\hat{\rho} = \rho * C$ )







#### Qualitative MRI

- inverting under-sampled Fourier data, mature techniques
- visualizing amplitude of magnetization for diagnosis
- $T_1$ ,  $T_2$  or ho weighted images by adjusting  $B_0$ ,  $B_1$
- reconstruction can be done apart from the physics behind

Quantitative MRI

- techniques still in experimental stage
- precisely measure the magnetic and tissue parameters e.g.  $heta=(T_1,T_2)^T$ , and ho
- imaging process is more time consuming
- physics (Bloch equations) explicitly entered into the reconstruction





# Mathematical understanding of MRF-based methods

The working flow of the original MRF<sup>*a*</sup>:

- Create a dictionary  $\text{Dic}(C_{ad})$  of magnetizations m: Solve Bloch equations for a variety of  $T_1$ ,  $T_2$ .  $C_{ad}$  restricts  $(T_1, T_2)$  to their natural range.
- Reconstruct  $X^* := (X^{(1)}, \ldots, X^{(L)})$  magnetization from the data:

$$X^{(l)} \in \underset{X}{\operatorname{argmin}} \|P^{(l)}\mathcal{F}X - Y^{(l)}\|_{2}^{2}, \quad l = 1, \dots, L.$$

Match the reconstructed magnetization to a dictionary element:

$$m^* \in \underset{m_{x,y} \in \mathsf{Dic}(C_{ad})}{\operatorname{argmin}} S(m_{x,y}, X^*) \text{ with } X^* = (X^{(1)}, \dots, X^{(L)}).$$

• Use look-up table to match  $(T_1, T_2)$  to  $m^*$ .

 $X^*$  might be non-unique and not optimal for under-sampled data!

<sup>a</sup>D. Ma et al. Magnetic resonance fingerprinting, Nature, **495**(187) (2013)



The BLIP algorithm <sup>*a*</sup> applies projected gradient descent (also called projected Landweber iteration) to approximate the following optimization problem:

$$\min_{X} ||P\mathcal{F}X - Y||^{2}, \qquad (BLIP)$$
  
subject to  $X \in \mathbb{R}^{+} \text{Dic}(C_{ad}).$ 

BLIP gives better reconstruction of the magnetization in MRF.

- From a geometric point of view,  $Dic(C_{ad})$  is a high dimensional manifold.
- The Bloch manifold is nonconvex with respect to  $\theta = (T_1, T_2)^{\top}$ , and the projection is ill-posed.
- Fineness of dictionary matters to the accuracy.



<sup>&</sup>lt;sup>a</sup>M. Davies et al. A compressive sensing framework for magnetic resonance fingerprinting, SIAM J. Imag. Sciences, **7**(4) (2014)

The FLOR algorithm<sup>a</sup> uses a low rank penalty for the representation of the magnetization in the dictionary:

$$\label{eq:subject} \begin{split} \min_X & \|P\mathcal{F}X-Y\|^2 + \lambda \mathrm{Rank}(X), \\ \text{subject to } X \in \mathbb{R}^+\mathrm{Dic}(C_{ad}). \end{split}$$

- X is a vector spanned by only a few elements from  $\text{Dic}(C_{ad})$ .
- FLOR further optimizes the reconstructing and matching steps in MRF.
- Produces better results than BLIP in radial sub-sampling.
- Algorithm does not work well in Cartesian cases.
- Fineness of dictionary still matters.



<sup>&</sup>lt;sup>a</sup>G. Mazor, L. Weizman, A. Tal, Y.C. Eldar. Low-rank magnetic resonance fingerprinting, Medical Physics, **45**(9), 2018

Dictionary based methods mostly approach qMRI problem from the following aspect: Solving two coupled (nonlinear) operator equations

$$PF(\rho m) = g,$$

and

$$\mathcal{B}(\theta) = m.$$

We have the following type of stability estimate<sup>*a*</sup>:

Theorem Let  $m, m^{\delta} \in \text{Dic}(C_{ad})$ , if  $||m - m^{\delta}|| \le \delta$  for some positive  $\delta > 0$ , then there exist constant C $||\theta - \theta^{\delta}|| < C\delta$ .





<sup>&</sup>lt;sup>a</sup>G. Dong, M. Hintermüller, K. Papafitsoros. Quantitative magnetic resonance imaging: From fingerprinting to integrated physics-based models, SIAM J. Imag. Sciences, Vol. 12, No. 2, pp. 927–971, 2019.

# Integrated physics-based method for qMRI

<sup>1</sup>Weierstrass Institute; <sup>2</sup>Humboldt University of Berlin

Online talk, December 3, 2021

• Integrate the two inverse problems into a single non-linear operator equation<sup>a</sup>:

$$Q(\rho,\theta) = g,$$

where

 $Q(\rho,\theta) := P\mathcal{F}(\rho T_{x,y}m(\theta)) \text{ and } [\rho(\mathbf{r});\theta(\mathbf{r})] \in \mathcal{C}_{ad} := [\mathbb{R}^+;C_{ad}] \text{ for all } \mathbf{r} \in \Omega.$ 

- Time continuous function  $m(\theta)$  practically replaced by discrete dynamics  $M(\theta)$  e.g. Inversion Recovery balanced Steady-State Free Precession.
- Some important properties are proven:
  - $M: [L^{\infty}(\Omega)]^2 \rightarrow [L^2(\Omega)]^3$  is Fréchet differentiable.
  - $M(C_{ad})$  is a non-convex set.
  - ${\scriptstyle \bullet } Q: [L^\infty(\Omega)]^3 \rightarrow [L^2(K)]^3$  is Fréchet differentiable.



<sup>&</sup>lt;sup>a</sup>G. Dong, M. Hintermüller, K. Papafitsoros. Quantitative magnetic resonance imaging: From fingerprinting to integrated physics-based models, SIAM J. Imag. Sciences, Vol. 12, No. 2, pp. 927–971, 2019.

In practice, discrete dynamic sequences  $M = (M_l)_{l=1}^L$  (e.g. Inversion Recovery balanced Steady-State Free Precession flip angle sequence patterns)

$$\begin{cases} M_l = E_1(TR_l, \theta) R_{\phi_l} R_x(\alpha_l) R_{\phi_l}^{\top} M_{l-1} + E_2(TR_l, \theta) M_e, \\ M_e = (0, 0, 1)^{\top}, \\ M_0 = -M_e = (0, 0, -1)^{\top}. \end{cases}$$

where

$$E_{1}(TR_{l},\theta) = \begin{pmatrix} e^{-\frac{TR_{l}}{T_{2}}} & 0 & 0\\ 0 & e^{-\frac{TR_{l}}{T_{2}}} & 0\\ 0 & 0 & e^{-\frac{TR_{l}}{T_{1}}} \end{pmatrix}, \quad E_{2}(TR_{l},\theta) = \left(1 - e^{-\frac{TR_{l}}{T_{1}}}\right)$$
$$R_{\phi_{\ell}} = \begin{pmatrix} \cos(\phi_{\ell}) & \sin(\phi_{\ell}) & 0\\ -\sin(\phi_{\ell}) & \cos(\phi_{\ell}) & 0\\ 0 & 0 & 1 \end{pmatrix} \text{ and } R_{x}(\alpha_{\ell}) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\alpha_{\ell}) & \sin(\alpha_{\ell})\\ 0 & -\sin(\alpha_{\ell}) & \cos(\alpha_{\ell}) \end{pmatrix}.$$

 $M_l$  has a closed form:

$$M_{l} = \left(\prod_{k=1}^{l} E_{1}(TR_{k},\theta)R(\alpha_{k})\right)M_{0} + E_{2}(TR_{l},\theta)M_{e} + \sum_{k=1}^{l-1} \left(E_{2}(TR_{k},\theta)\prod_{j=k+1}^{l} E_{1}(TR_{j},\theta)R(\alpha_{j})\right)M_{e}.$$



• Denote  $u = (T_1, T_2, \rho)^\top$ . Consider first order Taylor expansion:  $Q(u_{n+1}) \simeq Q(u_n) + Q'(u_n) (u_{n+1} - u_n) = g,$ 

suggests a projected Gauss-Newton iteration:

$$\begin{split} g_n &= g - Q(u_n) + Q'(u_n)u_n, \\ v_{n+1} &= (Q')^{\dagger}(u_n)g_n := \left( (Q'(u_n))^{\top}Q'(u_n) \right)^{-1} (Q'(u_n))^{\top}g_n, \\ u_{n+1} &= P_{\tilde{\mathcal{C}}_{ad}}v_{n+1}. \end{split}$$
where  $(P_{\tilde{\mathcal{C}}_{ad}}v)_p(r) = \begin{cases} \frac{C}{v_p} & \text{for } v_p(r) \leq \underline{C}_p \\ \frac{v_p(r)}{\overline{C}_p} & \text{for } \underline{C}_p < v_p(r) < \overline{C}_p \\ \frac{\overline{C}_p}{\overline{C}_p} & \text{for } \overline{C}_p \leq v_p(r) \end{cases}$ 

Converge superlinearly for proper initial values, but sensitive to noise.



- An estimation for  $u, h \in [L^{\infty}(\Omega)]^3$ , and  $Q : [L^{\infty}(\Omega)]^3 \to ([L^2(K)]^2)^L$ :  $\|Q(u+h) - Q(u) - Q'(u)h\|_{([L^2(K)]^2)^L} = o(\|h\|_{[L^2(\Omega)]^3}).$
- L-M is a kind of regularization for the case of noisy and under-sampled data.

Key steps of the algorithm (Note now in Hilbert space ( $[L^2(\Omega)]^3$ )):

- Initialization: using BLIP algorithm with a coarse dictionary.
- A projected Levenberg-Marquardt iteration:

$$\begin{split} \tilde{g}_{n}^{\delta} &= g^{\delta} - Q(u_{n}) \\ h_{n}^{\delta} &= \operatorname*{argmin}_{h} \|Q'(u_{n})h - \tilde{g}_{n}^{\delta}\|_{([L^{2}(K)]^{2})^{L}}^{2} + \lambda_{n} \|h\|_{[L^{2}(\Omega)]^{3}}^{2} \\ u_{n+1} &= P_{\tilde{\mathcal{C}}_{ad}}(u_{n} + h_{n}^{\delta}) \end{split}$$

with updated parameter  $\lambda_n = \max{\{\lambda_0\beta^n, \mu_n\}}$ , where  $\beta \in (0, 1)$ , and  $\mu_n \ge 0$ .





# Numerical results on qMRI–Cartesian subsampling case

#### Solution of BLIP algorithm



#### Solution of proposed method







# Numerical results on qMRI–Cartesian subsampling case

#### Relative error map from BLIP algorithm



#### Relative error map from proposed method







# Numerical results on qMRI–Radial subsampling case

#### Solution of FLOR algorithm



#### Solution of proposed method







#### Relative error map from FLOR algorithm



#### Relative error map from proposed method





# Using learning-informed physical models

• A general physics-based inverse (imaging) problem:

$$Ay = g,$$
 given  $g \in H$  where  $e(y, u) = 0$  for  $(y, u) \in Y \times U$  and  $u \in C_{ad}$ 

Let  $y = \Pi(u)$  be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch equations,  $u = \theta = (T_1, T_2, \rho)$ ).

• We study the following generic problem:

$$\begin{array}{ll} \underset{(y,u)\in(Y\times U)}{\text{minimize}} & \frac{1}{2} \|Ay - g^{\delta}\|_{H}^{2} + \frac{\alpha}{2} \|u\|_{U}^{2}, \\ \text{subject to} & e(y,u) = 0, \\ & u \in \mathcal{C}_{ad}. \end{array}$$



<sup>&</sup>lt;sup>1</sup>G. Dong, M. Hintermüller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.

• A general physics-based inverse (imaging) problem:

$$Ay = g,$$
 given  $g \in H$   
where  $e(y, u) = 0$  for  $(y, u) \in Y \times U$  and  $u \in C_{ad}$ 

Let  $y = \Pi(u)$  be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch equations,  $u = \theta = (T_1, T_2, \rho)$ ).

• We study the following generic problem:

$$\begin{array}{ll} \underset{u}{\text{minimize}} & \frac{1}{2} \|A\Pi(u) - g^{\delta}\|_{H}^{2} + \frac{\alpha}{2} \|u\|_{U}^{2} =: \mathcal{J}(u), \\ \text{subject to} & u \in \mathcal{C}_{ad}. \end{array}$$

<sup>&</sup>lt;sup>1</sup>G. Dong, M. Hintermüller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.





• A general physics-based inverse (imaging) problem:

$$Ay = g, \quad ext{given } g \in H$$
 where  $e(y,u) = 0$  for  $(y,u) \in Y imes U$  and  $u \in \mathcal{C}_{ad}$ 

Let  $y = \Pi(u)$  be an explicit representation of e(y, u) = 0 (e.g., solution map of Bloch equations,  $u = \theta = (T_1, T_2, \rho)$ ).

• We study the following generic problem:

$$\begin{array}{ll} \underset{u}{\text{minimize}} & \frac{1}{2} \|A\Pi_{\mathcal{N}}(u) - g\|_{H}^{2} + \frac{\alpha}{2} \|u\|_{U}^{2} =: \mathcal{J}_{\mathcal{N}}(u),\\ \text{subject to} & u \in \mathcal{C}_{ad}. \end{array}$$

<sup>&</sup>lt;sup>1</sup>G. Dong, M. Hintermüller, K. Papafitsoros. Optimization with learning-informed differential equation constraints and its applications, ESAIM: Control, Optimisation and Calculus of Variations, 2021.







A fully connected multi-layer feedforward ANN.

From one layer to the next: connected by affine mapping and activation function

$$\mathbf{h} = \sigma(\mathbf{z}) = \sigma(W\mathbf{x} + \mathbf{b}).$$



ANNs have been very successful approximators for functions  $f : \Omega \to \mathbb{R}^n$ , defined on bounded  $\Omega \subset \mathbb{R}^m$ .

## Theorem (function value approximation)

A standard multi-layer feedforward network with a continuous activation function can uniformly approximate any continuous function to any degree of accuracy if and only if its activation function is not a polynomial.

### Theorem (derivative approximation)

There exists a neural network which can approximate both the function value and the derivatives of f uniformly to any degree of accuracy if the activation function is continuously differentiable and is not a polynomial.

<sup>&</sup>lt;sup>2</sup>Pinkus, Approximation theory of the MLP model in neural networks. Acta Numerica, 1999.

Examples of smooth activation functions:

- Sigmoid: e.g., tansig ( $\sigma(z) = \frac{e^z e^{-z}}{e^z + e^{-z}}$ ), logsig ( $\sigma(z) = \frac{1}{1 + e^{-z}}$ )), arctan ( $\sigma(z) = \arctan(z)$ ), etc.
- Probability functions: e.g., softmax ( $\sigma_i(z) = rac{e^{-z_i}}{\sum_j e^{-z_j}}$ )

Examples of nonsmooth activation functions:

• ReLU: Rectified Linear Unit ( $\sigma(z) = \max(0, z)$ )

**Important**: Choosing smooth vs. nonsmooth activation functions should respect prior information on to be approximated object and has numerous implications in optimization.







- 4.  $f : \mathcal{K} \subset \mathcal{B}_1 \to \mathcal{B}_2$ ,  $(\mathcal{B}_k)_{k=1}^2$  can be infinite dimensional Under-development (very few still)
- Operator learning

Except for case 1, mathematical understanding of cases 2-4 still mostly in progress.

Main difficulty: Compactness condition problematic.





#### Fundamental questions:

- Conditions for well-posedness of learned physical model and universal approximation property of  $\Pi_N \sim \Pi$ .
- Approximation properties of optimizers associated to learning-informed models vs. those related to original physics-based models.





# Some analytical aspects





Denote  $Q := A\Pi$  (or  $A\Pi_{\mathcal{N}}$ ) the reduced operator.

### Theorem

Suppose that Q is weakly-weakly sequentially closed, i.e., if  $u_n \stackrel{U}{\rightharpoonup} u$  and  $Q(u_n) \stackrel{H}{\rightharpoonup} \overline{g}$ , then  $\overline{g} = Q(u)$ . Then the optimization problem admits a solution  $\overline{u} \in U$ .

In the special case when  $C_{ad}$  is a bounded set of a subspace  $\hat{U}$  compactly embedded into U, then strong-weak sequential closedness of Q is sufficient to guarantee existence of a solution.

- In many PDE models, regularity of the resp. solution helps the weak-weak sequential closedness condition of the control-to-state map to be satisfied.
- While in imaging applications (inverse problems, more generally) regularization usually plays a role similar to  $\hat{U}$ .





Let  $Q_n := A \prod_{\mathcal{N}_n}$  be the reduced learning-informed operators.

#### Theorem

Let Q and  $Q_n$  for  $n \in \mathbb{N}$  be weakly sequentially closed operators, and

$$\sup_{u \in \mathcal{C}_{ad}} \|Q(u) - Q_n(u)\|_H \le \epsilon_n, \quad \text{for} \quad \epsilon_n \downarrow 0.$$

Suppose  $(u_n)_{n \in \mathbb{N}}$  is a sequence of minimizers associated to the optimization problems with reduced operator  $Q_n$  for all  $n \in \mathbb{N}$ . Then, there is the strong convergence (up to a sub-sequence)

$$u_n \to \bar{u}$$
 in  $U$ , and  $Q_n(u_n) \to Q(\bar{u})$  in  $H$ , as  $n \to \infty$ ,

where  $\bar{u}$  is a minimizer of the original optimization problem.





Denote  $L_0$  and  $L_1$  the Lipschitz constants associated to Q and Q', respectively, where Q' is the Fréchet derivative of Q, and  $\eta_n := \|Q' - Q'_n\|_{\mathcal{L}(U,H)}$ .

#### Theorem

Under smallness of  $L_0$ ,  $L_1$ , the solutions  $u_n$  converge to  $\overline{u}$  at the following rate

$$||u_n - \bar{u}||_U = \mathcal{O}(L_0\epsilon_n + ||Q(\bar{u}) - g||_H\eta_n).$$

Theorem (when  $\mathcal{J}'(\bar{u}) = 0$ )

Suppose the Lipschitz constant  $L_1$  satisfies

$$L_1 \|Q(\bar{u}) - g\|_H < \alpha.$$

If  $\mathcal{J}'(\bar{u}) = 0$ , then for sufficiently large  $n \in \mathbb{N}$  we have the following error bound

$$\|u_n - \bar{u}\|_U = \mathcal{O}\left(\sqrt{\epsilon_n^2 + 2 \|Q(\bar{u}) - g\|_H^2}\right).$$





# Application to qMRI





#### qMRI fits the general optimization framework:

$$\underset{(y,u)}{\text{minimize}} \quad \frac{1}{2} \| P \mathcal{F}(y) - g^{\delta} \|_{H}^{2} + \frac{\alpha}{2} \| u \|_{U}^{2},$$

subject to

$$\begin{aligned} \frac{\partial y}{\partial t}(t) &= y(t) \times \gamma B(t) - \left(\frac{y_1(t)}{T_2}, \frac{y_2(t)}{T_2}, \frac{y_3(t) - \rho m_e}{T_1}\right), \ t = t_1, \dots, t_L, \\ y(0) &= \rho m_0, \\ u \in \mathcal{C}_{ad}. \end{aligned}$$

 $\blacksquare$  The goal is to estimate the physical parameters  $u=(
ho,T_1,T_2)$ 





#### qMRI fits the general optimization framework:

$$\underset{(y,u)}{\text{minimize}} \quad \frac{1}{2} \| P \mathcal{F}(y) - g^{\delta} \|_{H}^{2} + \frac{\alpha}{2} \| u \|_{U}^{2},$$

subject to

$$y = \mathcal{N}(u),$$
$$u \in \mathcal{C}_{ad}.$$

The goal is to estimate the physical parameters  $u = (\rho, T_1, T_2)$ ANNs  $\mathcal{N}$  approximate the parameter-to-solution map (Nemytskii type):

 $(\rho, T_1, T_2) \mapsto (y_{t_1}, \ldots, y_{t_L})$ 

Both  $\Pi$  and  $\Pi_{\mathcal{N}} = \mathcal{N}$  are operators of Nemytskii type in the qMRI case. **Theorem**  *The operator*  $\Pi : \mathcal{C}_{ad} \subset [L^{\infty}_{\epsilon}(\Omega)^+]^3 \rightarrow [(L^{\infty}(\Omega))^3]^L$  is Lipschitz continuous, and *Fréchet differentiable with locally Lipschitz derivative.* 

**Theorem** Let  $u = (T_1, T_2, \rho)^\top \in C_{ad}$ . Then for arbitrary small  $\epsilon > 0$  and  $\epsilon_1 > 0$ , there always exist neural network approximations so that

$$\|\Pi_{\mathcal{N}}(u) - \Pi(u)\|_{[L^{\infty}(\Omega)^3]^L} \le \epsilon,$$

and

$$\|\Pi_{\mathcal{N}}'(u) - \Pi'(u)\|_{\mathcal{L}([L^2(\Omega)]^3, [L^{\infty}(\Omega)^3]^L)} \leq \epsilon_1,$$

are satisfied.





# A sequential quadratic programming (SQP) algorithm

Define

$$\mathcal{J}_{\mathcal{N}}(u) := \frac{1}{2} \| P \mathcal{F}(\mathcal{N}(u)) - g^{\delta} \|_{H}^{2} + \frac{\alpha}{2} \| u \|_{U}^{2}.$$

The derivative  $\mathcal{J}'_{\mathcal{N}}(u)$  has an explicit form  $(\rho(\mathcal{N}'(T_1, T_2))^*, \mathcal{N}(T_1, T_2))^\top \mathcal{F}^*(\mathcal{F}(\rho\mathcal{N}(T_1, T_2)) - g) + \alpha(\mathsf{Id} - \Delta)(T_1, T_2, \rho)^\top.$ 

Every QP-step solves

$$\begin{array}{ll} \text{minimize} & \langle \mathcal{J}'_{\mathcal{N}}(u_k), h \rangle_{U^*, U} + \frac{1}{2} \langle H_k(u_k)h, h \rangle_{U^*, U} & \text{over } h \in U \\ \text{s.t.} & u_k + h \in \mathcal{C}_{ad}, \end{array}$$

where  $H_k(u_k)$  is a pos.-def. approx. of the Hessian of  $\mathcal{J}_N$  at  $u_k \in \mathcal{C}_{ad}$ :

 $(\rho(\mathcal{N}'(T_1, T_2))^*, \mathcal{N}(T_1, T_2))^\top \mathcal{F}^* \mathcal{F}(\rho(\mathcal{N}'(T_1, T_2)), \mathcal{N}(T_1, T_2)) + \alpha(\mathsf{Id} - \Delta).$ 



## Numerical results on synthetic data



#### Solutions using the proposed learning-informed method

#### Solutions using previous physics-integrated method







0.2

0.1

#### Error map from previous physics-integrated method

0.2

0.1





0.2

0.1

- Mathematical understanding of MRF type methods for qMRI.
- Integrated physics-based model for qMRI.
- Learning-informed model for explicit representations of physical operators.
- Mathematical analysis for the proposed methods and robust numerical algorithms.

## Thank you for your attention!

