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Learning

Learning is about modeling/understanding/approximating an
“input-to-output” relation/function/mapping.

> Representation of the mapping is of crucial importance for
understanding, accurate approximation, and computation efficiency.

» Learning from observation/measurement data has a long history.

> Understanding the underlying problem/model complexity is critical
for effective learning.

> how many degrees of freedom in the representation
> how much data needed
> the computation cost



PDE learning

» PDEs have a successful track record in modeling, studying, and
predicting in science, engineering and many real world applications.

» Effectiveness comes from

> a few terms that can capture various physical laws, diverse
mechanisms, and rich dynamics

> interpretable coefficients

> insightful understanding

> efficient computation

> Evolution PDE is an effective way to model dynamics or represent
an "initial-to-terminal” mapping.



PDE learning from its solution
Evolution PDE model

du(x,t) = —Lu(x, 1), (x,1)eQx[0,T], Q=19
u(x,0) = up(x).

Lu(x) = > pa(x)d"u(x),

|a|=0
Two approaches:

» Differential operator approximation (DOA) of the mapping
u(-,t) = u(-, t + At) restricted to some finite dimensional space.

> Pros: general and flexible.
> Cons: large degrees of freedom, large amount of global
solution data and expensive computation, difficult to decipher.

» Differential operator identification (DOI) built from differential
operators and their functions in a given dictionary.

> Pros: less degrees of freedom, less amount of and local data,
less computation cost, return of an explicit PDE.
> Cons: needs some prior knowledge for the dictionary.



Previous approaches and issues

A lot of approaches have been proposed, e.g., neural network based
DOA, regression based DOI.

Issues:

> Global solution data on a dense space-time (from t = 0) grid are
used.

> Use as many solution trajectories corresponding to as diverse initial
data as one wants.



Previous approaches and issues

A lot of approaches have been proposed, e.g., neural network based
DOA, regression based DOI.

Issues:

> Global solution data on a dense space-time (from t = 0) grid are
used.

> Use as many solution trajectories corresponding to as diverse initial
data as one wants.

In practice, solution data is available
» from one solution trajectory with uncontrollable initial data,

> observed by local sensors (for some time duration) at certain
locations,

> after some time delay.
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Basic questions for PDE learning

How large is the data space spanned by all snapshots of a solution
trajectory?

Identifiability of PDEs using a single solution trajectory and stability.
Data-driven and data-adaptive sampling.

Robust PDE type identification using local measurements from a
single trajectory.



Data space spanned by a solution trajectory: parabolic

Let L be a strongly elliptic operator of order n = 2m, then thereisau >0
such that

. 1 . .
eﬁﬂfzz—mfrezf(z—zﬂ) 'dz, L,=L+pu

{2k, #x}k>1 denote the eigenpairs of L, sorted by R in ascending
order. {1 }ks1 satisfy the growth rate R, = O(kP) with 8 = n/d.

Theorem 1
Fort e [ty = €', T], there is an operator Ly = Yy cke 2! (zx — £,)™"
with constants cx, zx € C and N = C(r, £,)|log €[?

lle™! = Ln(t)lly(9)-L(@) < €.



Data space spanned by a solution trajectory: parabolic

Theorem 2

Assume ug(x) = Y54 ckdr(x) and k| < 6k™, 6 > 0,y > 1/2, then there
exists a linear space V c L2() of dimension C(x, L,)|log €l?

llu(-, 1) = Pyu(-, Il < Cellull, Yt € [0, T].

Py is the projection operator onto V, C = C(6,y), x = O(28/(2y — 1)).



Data space spanned by a solution trajectory: parabolic

Theorem 2
Assume ug(x) = Y54 ckdr(x) and k| < 6k™, 6 > 0,y > 1/2, then there
exists a linear space V c L2() of dimension C(x, L,)|log €l?

llu(-,t) = Pyu(-, 1)l < Celluoll, ¥t € [0, T].
Py is the projection operator onto V, C = C(8,7), k = O(28/(2y — 1)).
Key points: If up(x) = Y ckd(X) = u(x, t) = e Y5, cke gy ().
Take M. = O(e?(""2))(= |lu(-, t) — um.(-, Dlliz(e) < €), Le = O(llog el),

) Zt’ Zc s ’u) o (x)|eVi=span ic (—1)’M I<L
(X, i , « T dk(x), 0<I<L,

Fort € [0, 43,1, llum, (X, t) = we(x, t)ll <
For t € [4;, = O(e/-1), T],

AV =span {(zc-L,) " up. 1=k <N=0(llog el?)}, llu(x. 1) = Py,u(x, Il < €.
V=V;+V, dimV=0(logeP).



Data space spanned by a solution trajectory: hyperbolic

owu(x, t) +c(x) - Vu(x,t) =0, (x,t)eQx][0,T], Q=Td
u(x,0) = up(x).

Define the two correlation functions in space and time of a solution,

;
K(x,y) = f u(x,s)u(y,s)ds, (x,y)eQxQ,
0
G(s,t) := f u(x,tiu(x,s)dx, (s,t) €[0,T]x]0, T],
Q

K(x,y), G(s,t) define two symmetric semi-positive compact integral
operators on L2(Q2) and L2[0, T] respectively, with the same non-negative
eigenvalues 11 2 A2 > ... 2 4 >... - 0.

Let V,’} be the space spanned by the k leading eigenfunctions of K(x, y),

f I 0-Pygule Oyt =, min f 0 1Py, O =S 4.

j=kt1



Data space spanned by a solution trajectory: hyperbolic

Theorem 3
If ¢(x), up(x) € CP(Q), there exists a V c L?(2) of dimension O(e2/P)

\/ f IPUC. 1) ~ (- Ry g < €

Key point: G(s, t) € CP([0, T]?), its eigenvalue decays 1,=o(n~(P*+1),
Remark

» Explicit example can be constructed to show that if uy € CP,
dimV 2 e /(P+2),

> If both ¢(x) and ug(x) are analytic, then the data space is of
dimension O(|log €|%).



Data space spanned by multiple solution trajectories

Theorem 4
If L is a self-adjoint strongly elliptic operator, then there exists a linear
space V c L3(Q), dim V = O((z""|log €)¥/"), for any solution u(x, t) to
the equation

ou=-Lu

with initial condition ug € L?(Q),
r};i\? If(x) = u(x, t)llL2(e) < €lluolliz), Yte[r T].
e For hyperbolic operator with multiple trajectories, the solution data

space on an interval [0, T] is as rich as the solution data space on
[. T +1].



Potential challenges for PDE learning from its solution

DOA for the mapping: u(-,0) € Hp(2) :— u(-, At).
> With € tolerance, dim(H,(£2)) = O(e"/P).
> Large number of parameters are needed in the approximation.

> Limited data in practice.



Differential operator identification (DOI)

Goal: identify a differential operator
> built from a dictionary of basic operators and their functions
> globally consistent
> using as few terms as possible
» fitting measurements well

using minimal local data from a single solution trajectory.



Identifiability from a single solution trajectory

PDE with constant coefficients: du(x, t) = ¥ _o Pa0“u(X).
Let u(¢, t) be the Fourier transform of the solution u(x, t).

u(t,£) =u(0.¢) exp [—(Zn)"/2 D pa(ig)”t]

|a|=0

Theorem 5 n_1
Let @ = (¢ €27 - To(¢) 01, 10 = max (5, (591), 2%, (37))

k=0 \ d-1
and Q is not located on an algebraic polynomial hypersurface of degree
< n consists of only even order terms or odd order terms, then the PDE is
uniquely determined by the solution at two instants u(x, to), u(x, t;) if
|to — t1] is small enough.



Identifiability from a single solution trajectory
PDE with variable coefficients: dqu(x, t) = X,_ Pa(X)0"u(X).
» different regression problems at different locations,

> variation of the coefficients are intertwined with the solution in both
frequency and spatial domain.

Lemma 6

Letm = (”Zd). For any given x € Q, the parameters p,(x) can be
recovered if and only if one can find m instants t, . .., t,, such that the
matrix Ak, = 0°U(x, t) is non-singular.

Consider the limiting case that t4,...,tn — 0,

Ay, becomes Sk, = LK up(x), k =1,2,...,m.

Theorem 7

Assume up = Y[_, wje's*, r > ((’”‘2””), and ¢; € Z% are not on an

algebraic hypersurface of degree (m — 1)n, w; ~ Ula;, bj]. If

Yaen, IPo(X)I? # 0 almost everywhere in Q, then the matrix S is
non-singular almost surely wrt P, the induced probability measure on
Qx 17, (4. b).



Potential instability for DOI for parabolic PDE

Small perturbation: p,(x) — Pa(X) + ufe(x), lul < 1. w(x, t) = d,u(x, t)
satisfies

ow(x,t) = Zp[, x)0%w xt+za )o%u(x, t),

la]= la|=
w(x,0) = 0.
For parabolic PDE

”W(X’t)”i?(ﬂx[o,T])SCZJ‘7/3 ) (X)fa(x dx<cfm Z|f x)[Pdx

0<lal.|Bl< lo|=

K(x) = (Kap(x) = foaa x, 1)oPu(x, t)dt) is a semi PD matrix for each
x € Qand Ap(x) = 0 is the smallest eigenvalue.

For short time T < 1, Am(x) < L1 IM(x)|| + O(T™1)

= m

n 12 1/2
=[Sy rater] [ o]

lo|=0 lo]=0

X A cTm 1 1
= min W}z g0 1) < T L™ tollwez(@)lUollwez(e) + O(T™).



Potential instability for DOI for parabolic PDE

L=-Y"_, p,0*: an elliptic operator with constant coefficients in 1D.
n
)= 2D A== pulik)" () = cee™
keZ a=0
L= L-5e9%3" for some q € Z.

t) _ Zak(t)eikx, ak(t) _ e—/lkt(ck " jo‘t /lkS(S( (k q)) /akq(S)dS)

keZ

Theorem 8
Under the assumption R Ay > C1(k)", |ck|< Co(k) P, B>1, 62 T<yCi,y€(0,1)

(Cz)2
Ci

UG, B0 - sy < (@7

(ky=(1+K?)'"2, Cg = Ykez(1 + K2)" P2, C4 = Ypez(1 + K2) 2.
= instability for high frequency perturbation.



Consistent and Sparse Local Regression(CaSLR) for DOI

Key features of CaSLR:

» enforcing global consist PDE

> using fewest possible terms

» fitting local patch data from a single solution trajectory
for identification of PDE with variable coefficients.

Remark. CaSLR has similarities to the method proposed by Rudy (2019)
et al.



CaSLR

Assumption:

o PDE: us(x, 1) = 2K, ck(x, fe(x, t), fi’s are terms from a dictionary.
e Solution data on local patches €; centered at (x;, t), j=1,...,J.

e Patch size can resolve the variation of ck(x, t).

> Define the local regression error in each patch ;.

2

K
g°@) = >, |l tim) = D &h(Xm: tim)
k=1

(Xj.m tim )€Y

> Define the global regression error

J

E@) =D 8%@E) €=[6r....&] &=1¢....8]
=1

> For each /, find & = argming E(€) subject to:  [|€llaroup—t, = !

l€llgroup—¢, = lIlIC4111, - .., lIEkll1)llo, using Group Subspace Pursuit
(G-SP) proposed by He (2022) et al.

> Find I minimizes S' = &(&') + p£.



Data-driven and data-adaptive sampling

Not all data are equal. = Not all patches should be used indiscretely.
> CaSLR is based on consistent PDE identification on local patches.

> Ideal sensor: small patch size with fine resolution that detects
diverse modes.

> Bad patch data: 1) patch data with little mode content cause
instability. 2) patch data with rapid change induce large errors.

Numerical local Sobolev semi-norm can be used to filter out bad patches.

mj P,
1 !l max
B = Jﬁ- 2 2 (BEuCm. m))?
m=1 p=1

Remark.
> When data contains noise more sophisticated process is needed.

> Once PDE type is determined, more accurate reconstruction of
coefficients can be achieved.



Experiments

Example 1: Transport equation.

u(x,t) = (1 4+ 0.5sin(nx)7(t; —10,0.5))ux(x, 1), (x,t) € [-1,1) x (0,1],
u(x,0) = sin(4n(x + 0.1)) + sin(67x) + cos(2x(x — 0.5)) + sin(27(x + 0.1)).

where 7(t; s,t,) = 0.5 + 0.5tanh(s(t - t;))), teR.
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Experiments

Example 2: KdV type equation.

5-+sin(400)

ur(x, t) = (3 + 200t sin(mx))u(x, t)ux (X, t) + —55— Uxxx (X, 1),
u(x,0) = sin(4n(x+0.1))+2sin(5xx)+cos(2n(x—0.5)) +sin(37x) +cos(67x).
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Experiments

Example 3: 2D circular flow.
ur(x, y, t) = —yux(x, y, t) + xuy(x,y, t)
u(x,y,0) = f(x,y)

u(x,y, t)=f(y/x?+y? cos(arctan(y/x)—t), y/x2+y? sin(arctan(y/x)—t)),
where f(x, y) = cos(4 /x2 + y2) cos(2arctan(y/x)).
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Experiments

Example 4: Schrédinger equation.

iy = %l/’xx - V(x, )y, V(x,t) =-10 - 2sin(40xt) cos(nx).
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Thank you for your attention!



