
How much can one learn a PDE from its
solution?

Hongkai Zhao
Duke University

Joint with Yuchen He and Yimin Zhong

Research partially supported by NSF DMS-2012860.



Learning

Learning is about modeling/understanding/approximating an
”input-to-output” relation/function/mapping.

I Representation of the mapping is of crucial importance for
understanding, accurate approximation, and computation efficiency.

I Learning from observation/measurement data has a long history.

I Understanding the underlying problem/model complexity is critical
for effective learning.

I how many degrees of freedom in the representation
I how much data needed
I the computation cost



PDE learning

I PDEs have a successful track record in modeling, studying, and
predicting in science, engineering and many real world applications.

I Effectiveness comes from

I a few terms that can capture various physical laws, diverse
mechanisms, and rich dynamics

I interpretable coefficients
I insightful understanding
I efficient computation

I Evolution PDE is an effective way to model dynamics or represent
an ”initial-to-terminal” mapping.



PDE learning from its solution
Evolution PDE model

∂tu(x, t) = −Lu(x, t), (x, t) ∈ Ω × [0,T ], Ω = Td

u(x, 0) = u0(x).

Lu(x) =
n∑
|α|=0

pα(x)∂αu(x),

Two approaches:

I Differential operator approximation (DOA) of the mapping
u(·, t)→ u(·, t + ∆t) restricted to some finite dimensional space.
I Pros: general and flexible.
I Cons: large degrees of freedom, large amount of global

solution data and expensive computation, difficult to decipher.

I Differential operator identification (DOI) built from differential
operators and their functions in a given dictionary.
I Pros: less degrees of freedom, less amount of and local data,

less computation cost, return of an explicit PDE.
I Cons: needs some prior knowledge for the dictionary.



Previous approaches and issues

A lot of approaches have been proposed, e.g., neural network based
DOA, regression based DOI.

Issues:

I Global solution data on a dense space-time (from t = 0) grid are
used.

I Use as many solution trajectories corresponding to as diverse initial
data as one wants.

In practice, solution data is available

I from one solution trajectory with uncontrollable initial data,

I observed by local sensors (for some time duration) at certain
locations,

I after some time delay.
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Basic questions for PDE learning

I How large is the data space spanned by all snapshots of a solution
trajectory?

I Identifiability of PDEs using a single solution trajectory and stability.

I Data-driven and data-adaptive sampling.

I Robust PDE type identification using local measurements from a
single trajectory.



Data space spanned by a solution trajectory: parabolic

Let L be a strongly elliptic operator of order n = 2m, then there is a µ > 0
such that

e−Lµt =
1

2πi

∫
Γ

e−zt (z − Lµ)−1dz , Lµ = L+ µ.

{λk , φk }k≥1 denote the eigenpairs of Lµ sorted by<λk in ascending
order. {λk }k≥1 satisfy the growth rate<λk = O(k β) with β = n/d.

Theorem 1
For t ∈ [t0 = εr ,T ], there is an operator LN =

∑N
k=−N ck e−zk t (zk − Lµ)−1

with constants ck , zk ∈ C and N = C(r ,Lµ)| log ε|2

‖e−Lµt − LN(t)‖L2(Ω)→L2(Ω) ≤ ε.



Data space spanned by a solution trajectory: parabolic

Theorem 2
Assume u0(x) =

∑∞
k=1 ckφk (x) and |ck | ≤ θk−γ, θ > 0, γ > 1/2, then there

exists a linear space V ⊂ L2(Ω) of dimension C(κ,Lµ)| log ε|2

‖u(·, t) − PV u(·, t)‖ ≤ Cε‖u0‖, ∀t ∈ [0,T ].

PV is the projection operator onto V, C = C(θ, γ), κ = O(2β/(2γ − 1)).

Key points: If u0(x) =
∑∞

k=1 ckφk (x)⇒ u(x, t) = eµt ∑∞
k=1 ck e−λk tφk (x).

Take Mε = O(ε2/(1−2γ))(⇒ ‖u(·, t) − uMε
(·, t)‖L2(Ω) . ε), Lε = O(| log ε|),

wε(x, t)=
Lε∑

l=0

t l

Mε∑
k=1

ck (−1)l (λk−µ)l

l!
φk (x)

∈V1=span

Mε∑
k=1

ck (−1)l (λk−µ)l

l!
φk (x), 0≤ l≤Lε


For t ∈ [0, λ−1

Mε
], ‖uMε

(x, t) − wε(x, t)‖ . ε.
For t ∈ [λ−1

Mε
=O(ε2β/(2γ−1),T ],

∃V2 =span
{
(zk−Lµ)−1u0, 1=k ≤N =O(| log ε|2)

}
, ‖u(x, t) − PV2 u(x, t)‖ . ε.

V = V1 + V2, dim V = O(| log ε |2).
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Data space spanned by a solution trajectory: hyperbolic

∂tu(x, t) + c(x) · ∇u(x, t) = 0, (x, t) ∈ Ω × [0,T ], Ω = Td

u(x, 0) = u0(x).

Define the two correlation functions in space and time of a solution,

K(x, y) :=

∫ T

0
u(x, s)u(y, s)ds, (x, y) ∈ Ω × Ω,

G(s, t) :=

∫
Ω

u(x, t)u(x, s)dx, (s, t) ∈ [0,T ] × [0,T ],

K(x, y), G(s, t) define two symmetric semi-positive compact integral
operators on L2(Ω) and L2[0,T ] respectively, with the same non-negative
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λj ≥ . . .→ 0.
Let Vk

K be the space spanned by the k leading eigenfunctions of K(x, y),∫ T

0
‖u(·, t)−PVk

K
u(·, t)‖2L2(Ω)dt = min

V⊂L2(Ω),dim V=k

∫ T

0
‖u(·, t)−PV u(·, t)‖2L2(Ω)dt=

∞∑
j=k+1

λj .



Data space spanned by a solution trajectory: hyperbolic

Theorem 3
If c(x), u0(x) ∈ Cp(Ω), there exists a V ⊂ L2(Ω) of dimension O(ε−2/p)√∫ T

0
‖PV u(·, t) − u(·, t)‖2L2(Ω)

dt ≤ ε.

Key point: G(s, t)∈Cp([0,T ]2), its eigenvalue decays λn =o(n−(p+1)).
Remark

I Explicit example can be constructed to show that if u0 ∈ Cp ,
dim V & ε−1/(p+ 1

2 ).

I If both c(x) and u0(x) are analytic, then the data space is of
dimension O(| log ε |d).



Data space spanned by multiple solution trajectories

Theorem 4
If L is a self-adjoint strongly elliptic operator, then there exists a linear
space V ⊂ L2(Ω), dim V = O((τ−1| log ε|)d/n), for any solution u(x, t) to
the equation

∂tu = −Lu

with initial condition u0 ∈ L2(Ω),

min
f∈V
‖f(x) − u(x, t)‖L2(Ω) ≤ ε‖u0‖L2(Ω), ∀t ∈ [τ,T ].

• For hyperbolic operator with multiple trajectories, the solution data
space on an interval [0,T ] is as rich as the solution data space on
[τ,T + τ].



Potential challenges for PDE learning from its solution

DOA for the mapping: u(·, 0) ∈ Hp(Ω) :−→ u(·,∆t).

I With ε tolerance, dim(Hp(Ω)) = O(ε−d/p).

I Large number of parameters are needed in the approximation.

I Limited data in practice.



Differential operator identification (DOI)

Goal: identify a differential operator

I built from a dictionary of basic operators and their functions

I globally consistent

I using as few terms as possible

I fitting measurements well

using minimal local data from a single solution trajectory.



Identifiability from a single solution trajectory

PDE with constant coefficients: ∂tu(x, t) =
∑n
|α|=0 pα∂αu(x).

Let û(ζ, t) be the Fourier transform of the solution u(x, t).

û(t , ζ) = û(0, ζ) exp

−(2π)−d/2
n∑
|α|=0

pα(iζ)αt


Theorem 5
Let Q = {ζ ∈ Zd : û0(ζ) , 0}, if |Q | ≥ max

(∑b n
2 c

k=0 (2k+d−1
d−1 ),

∑b n−1
2 c

k=0 (2k+d
d−1 )

)
and Q is not located on an algebraic polynomial hypersurface of degree
≤ n consists of only even order terms or odd order terms, then the PDE is
uniquely determined by the solution at two instants u(x, t2), u(x, t1) if
|t2 − t1| is small enough.



Identifiability from a single solution trajectory
PDE with variable coefficients: ∂tu(x, t) =

∑n
|α|=0 pα(x)∂αu(x).

I different regression problems at different locations,

I variation of the coefficients are intertwined with the solution in both
frequency and spatial domain.

Lemma 6
Let m = (n+d

d ). For any given x ∈ Ω, the parameters pα(x) can be
recovered if and only if one can find m instants t1, . . . , tm such that the
matrix Ak ,α := ∂αu(x, tk ) is non-singular.

Consider the limiting case that t1, . . . , tm → 0,
Ak ,α becomes Sk ,α := ∂αLk−1u0(x), k = 1, 2, . . . ,m.

Theorem 7
Assume u0 =

∑r
j=1 wje iζj ·x , r > ((m−1)n+d

d ), and ζj ∈ Z
d are not on an

algebraic hypersurface of degree (m − 1)n, wj ∼ U[aj , bj]. If∑
α∈Dn
|pα(x)|2 , 0 almost everywhere in Ω, then the matrix S is

non-singular almost surely wrt P, the induced probability measure on
Ω ×

∏m
j=1[aj , bj].



Potential instability for DOI for parabolic PDE
Small perturbation: pα(x)→ pα(x) + µfα(x), |µ| � 1. w(x, t) = ∂µu(x, t)
satisfies

∂tw(x, t) =
n∑
|α|=0

pα(x)∂αw(x, t) +
n∑
|α|=0

fα(x)∂αu(x, t),

w(x, 0) = 0.

For parabolic PDE

‖w(x, t)‖2L2(Ω×[0,T ])≤c
∑

0≤|α|,|β|≤n

∫
Ω
Kαβ(x)fα(x)fβ(x)dx ≤c

∫
Ω
λm(x)

n∑
|α|=0

|fα(x)|2dx

K(x) = (Kαβ(x) =
∫ T

0∂
αu(x, t)∂βu(x, t)dt) is a semi PD matrix for each

x ∈ Ω and λm(x) ≥ 0 is the smallest eigenvalue.

For short time T � 1, λm(x) ≤ Tm

m! ‖M(x)‖+ O(Tm+1)

‖M(x)‖ ≤

 n∑
|α|=0

|∂αu0(x)|2

1/2  n∑
|α|=0

|∂αLm−1u0(x)|2

1/2

⇒ min
fα∈F
‖w‖2L2(Ω×[0,T ]) ≤

cTm

m!
‖Lm−1u0‖Wn,2(Ω)‖u0‖Wn,2(Ω) + O(Tm+1).



Potential instability for DOI for parabolic PDE
L=−

∑n
α=0 pα∂α: an elliptic operator with constant coefficients in 1D.

u(x, t) =
∑
k∈Z

φk (t)e ik ·x , λk = −
n∑

α=0

pα(ik)α, φk (t) = ck e−λk t

L̃ = L − δe iq·x∂α
′

, for some q ∈ Z.

ũ(x, t) =
∑
k∈Z

φ̃k (t)e ik ·x , φ̃k (t) = e−λk t
(
ck +

∫ t

0
eλk sδ(i(k − q))α

′

φ̃k−q(s)ds
)

Theorem 8
Under the assumption<λk ≥C1〈k 〉n, |ck |≤C2〈k 〉−β, β>1

2 , δ2T<γC1, γ∈(0,1)

‖u(x, t)−ũ(x, t)‖2L2(Ω×[0,T ])≤
γ

2(1−γ)

(
〈q〉−n(2n +

(C2)2

C1
)C3+〈q〉2α

′−2β−n2n+2β−2α′C4

)
,

〈k 〉 = (1 + k 2)1/2, C3 =
∑

k∈Z(1 + k 2)α
′−β−n/2, C4 =

∑
k∈Z(1 + k 2)−n/2.

⇒ instability for high frequency perturbation.



Consistent and Sparse Local Regression(CaSLR) for DOI

Key features of CaSLR:

I enforcing global consist PDE

I using fewest possible terms

I fitting local patch data from a single solution trajectory

for identification of PDE with variable coefficients.

Remark. CaSLR has similarities to the method proposed by Rudy (2019)
et al.



CaSLR
Assumption:
• PDE: ut (x, t) =

∑K
k=1 ck (x, t)fk (x, t), fk ’s are terms from a dictionary.

• Solution data on local patches Ωj centered at (xj , tj), j = 1, . . . , J.
• Patch size can resolve the variation of ck (x, t).

I Define the local regression error in each patch Ωj .

Eloc
j (ĉj) =

∑
(xj,m ,tj,m)∈Ωj

ut (xj,m, tj,m) −
K∑

k=1

ĉ j
k fk (xj,m, tj,m)


2

.

I Define the global regression error

E(ĉ) =
J∑

j=1

Eloc
j (ĉj), ĉ = [ĉ1, . . . , ĉJ], ĉj = [ĉ j

1, . . . , ĉ
j
K ].

I For each l, find ĉl = arg minĉ E(ĉ) subject to: ‖ĉ‖Group−`0 = l
‖ĉ‖Group−`0 = ‖(‖ĉ1‖1, . . . , ‖ĉK ‖1)‖0, using Group Subspace Pursuit
(G-SP) proposed by He (2022) et al.

I Find l minimizes S l = E(ĉl) + ρ l
K .



Data-driven and data-adaptive sampling
Not all data are equal. ⇒ Not all patches should be used indiscretely.

I CaSLR is based on consistent PDE identification on local patches.

I Ideal sensor: small patch size with fine resolution that detects
diverse modes.

I Bad patch data: 1) patch data with little mode content cause
instability. 2) patch data with rapid change induce large errors.

Numerical local Sobolev semi-norm can be used to filter out bad patches.

βij =

√√√
1
mj

mj∑
m=1

Pmax∑
p=1

(∂p
x u(xj,m, tj,m))2

Remark.

I When data contains noise more sophisticated process is needed.

I Once PDE type is determined, more accurate reconstruction of
coefficients can be achieved.



Experiments

Example 1: Transport equation.

ut (x, t) = (1 + 0.5 sin(πx)τ(t ;−10, 0.5))ux(x, t) , (x, t) ∈ [−1, 1) × (0, 1],

u(x, 0) = sin(4π(x + 0.1)) + sin(6πx) + cos(2π(x − 0.5)) + sin(2π(x + 0.1)).

where τ(t ; s, tc) = 0.5 + 0.5 tanh(s(t − tc))), t ∈ R.



Experiments

Example 2: KdV type equation.

ut (x, t) = (3 + 200t sin(πx))u(x, t)ux(x, t) +
5+sin( 400πt

3 )

100 uxxx(x, t),
u(x, 0) = sin(4π(x +0.1))+2 sin(5πx)+cos(2π(x−0.5))+sin(3πx)+cos(6πx).



Experiments

Example 3: 2D circular flow.

ut (x, y, t) = −yux(x, y, t) + xuy(x, y, t)

u(x, y, 0) = f(x, y)

u(x, y, t)= f(
√

x2+y2 cos(arctan(y/x)−t),
√

x2+y2 sin(arctan(y/x)−t)),
where f(x, y) = cos(4

√
x2 + y2) cos(2 arctan(y/x)).



Experiments

Example 4: Schrödinger equation.

iψt =
1
2
ψxx − V(x, t)ψ, V(x, t) = −10 − 2 sin(40πt) cos(πx).



Thank you for your attention!


