Motivation Defe	ensive DNN's II	mmune system I	immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000 00) (0000	00000000	00000000	0000000	000	00

Immuno-mimetic Deep Neural Networks

Alfred Hero

University of Michigan - Ann Arbor

April 1, 2022

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00

2 Defending DNNs against anomalous inputs and attacks

3 The natural mammalian adaptive immune system

Immuno-Net: in-silico emulation of the immune system for DNN's

5 Convergence analysis

Numerical experiments demonstrate Immuno-Net for image classification

In-vitro bioreactor experiment validates Immuno-Net model

8 Summary comments and perspectives

			00000000	00000000	0000000	000	00
Princip	al referenc	es					

- Wang, R., Chen, T., Lindsly, S., Stansbury, C., Rajapakse, I., and Hero, A. (2021). Immuno-mimetic Deep Neural Networks (Immuno-Net), International Conference on Machine Learning, Workshop on Computational Biology, 2021.
- Wang, R, Chen, T, Lindley, S, Stansbury, C, Rehemtulla, A, Rajapakse, I, and Hero, A, "RAILS: A robust immune- inspired learning system," IEEE Access, Mar. 2022. doi:10.1109/TIT.2022.3151719

Code: https://github.com/wangren09/RAILS

	Defensive DNN's 00			Numerical experiments	In-vitro experiments 000	Summary 00
Acknow	wledgemen	ts				

Students and collaborators on this project

- Ren Wang, Post-doc/Instructor UM
- Indika Rajapakse, Associate Professor UM
- Cooper Stansbury, Doctoral Student UM
- Tianqi Chen, Doctoral Student UT Austin
- Steven Lindley, Technical Staff Mathworks
- Dogyoon Song, Post-doc UM

Research sponsors

- ARO: MURI: Multiscale biofilm data-model integration and experimental design
- DARPA: Guaranteeing AI Robustness Against Deception (GARD)

		0.0.00				
00000	00	0000	00000000	00000000	0000000	000
Motivation	Defensive DNN's		Immuno-Net		Numerical experiments	In-vitro experiment

DARPA GARD Team

Indika Rajapakse Michigan

Maya Gupta Didero

Steve Smale

UC Berkeley

Alnawaz Rehemtulla

Lindsey Muir Michigan

Michigan Mathematics

Alfred Hero

Stephen Lindsly Michigan

Tiangi Chen Michigan

Ren Wang Michigan

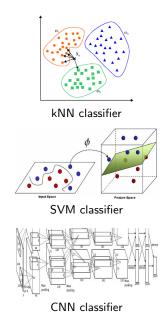
Walter Meixner Michigan

Siva Jeyarajan Michigan

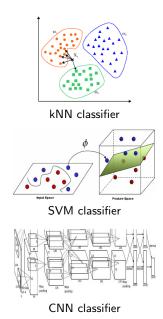
Charles Ryan Michigan

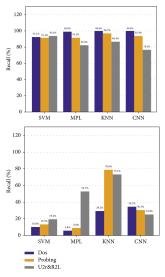
00000	00	0000	00000000	00000000	0000000	000	00
					Numerical experiments		

Machine learning vulnerabilities



Machine learning vulnerabilities





Clean inputs(Top). Adversarial inputs(Bottom) Guo, et al. "A Black-Box Attack Method against Machine-Learning-Based Anomaly Network Flow Detection Models." Security and Communication Networks. 2021

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00
Threat	models						

Attacks are characterized along various axes

- Attack during testing (evasion) vs attack during training (poisoning)
- Targeted vs untargeted attacks
- Information available to attacker on classifier algorithm
- Attack strength and perceptual saliency
- Number of steps: #attacker-evaluations of classifier function

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00
Threat	models						

Attacks are characterized along various axes

- Attack during testing (evasion) vs attack during training (poisoning)
- Targeted vs untargeted attacks
- Information available to attacker on classifier algorithm
- Attack strength and perceptual saliency
- Number of steps: #attacker-evaluations of classifier function

White box evasion attacks: attacker has knowledge of classifier function

- Projected Gradient Descent (PGD): optimize attack wrt misclassification criterion
- Fast Gradient Sign Method (FGSM): a faster (approximate) PGD
- Auto-Attack: a multi-level attack

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00
Threat	models						

Attacks are characterized along various axes

- Attack during testing (evasion) vs attack during training (poisoning)
- Targeted vs untargeted attacks
- Information available to attacker on classifier algorithm
- Attack strength and perceptual saliency
- Number of steps: #attacker-evaluations of classifier function

White box evasion attacks: attacker has knowledge of classifier function

- Projected Gradient Descent (PGD): optimize attack wrt misclassification criterion
- Fast Gradient Sign Method (FGSM): a faster (approximate) PGD
- Auto-Attack: a multi-level attack

Black box evasion attacks: attacker has no knowledge of classifier function

- Gradient-free attack, e.g., using BFGS optimizer
- Square attack
- Boundary attack
- Adversarial patch attack

				Numerical experiments 00000000	Summary 00
The ta	rgeted ℓ_p a	adversarial	attack		

Labeled training data $\{(x_j, y_j)\}_{j=1}^n$

- Features: $\mathbf{x}_j \in [0, 1]^d$ Class labels: $y_j \in [C] \stackrel{\text{def}}{=} \{1, \dots, C\}$

Motivation Defensive DNN's Immuno-Net 00000 The targeted ℓ_p adversarial attack

Labeled training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

- Features: $\mathbf{x}_j \in [0, 1]^d$ Class labels: $y_j \in [C] \stackrel{\text{def}}{=} \{1, \dots, C\}$

Classifier optimized over training data

- Classifier function: $c_{\theta} : [0, 1]^d \to [C]$
- Classifier tuning parameters: $\boldsymbol{\theta} \in \mathbb{R}^{q}$
- Loss function: $I : [C] \times [C] \rightarrow \mathbb{R}$
- Fitting criterion: $\min_{\theta} L(\theta)$, $L(\boldsymbol{\theta}) = \sum_{i=1}^{n} l(c_{\boldsymbol{\theta}}(\mathbf{x}_{j}), y_{j})$

Motivation Immuno-Net Numerical experiments Summary 00000

The targeted ℓ_p adversarial attack

Labeled training data $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$

- Features: $\mathbf{x}_j \in [0, 1]^d$ Class labels: $y_j \in [C] \stackrel{\text{def}}{=} \{1, \dots, C\}$

Classifier optimized over training data

- Classifier function: $c_{\theta} : [0, 1]^d \to [C]$
- Classifier tuning parameters: $\boldsymbol{\theta} \in \mathbb{R}^{q}$
- Loss function: $I : [C] \times [C] \rightarrow \mathbb{R}$
- Fitting criterion: $\min_{\theta} L(\theta)$, $L(\boldsymbol{\theta}) = \sum_{i=1}^{n} l(c_{\boldsymbol{\theta}}(\mathbf{x}_{j}), y_{j})$

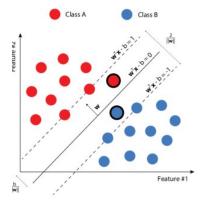
Targeted ℓ_p adversarial attack on classifer

 Try to perturb x towards target class t $\Rightarrow c_{\theta}(\mathbf{x} + \boldsymbol{\delta}) = t$, where

$$\begin{split} \delta &= & \max_{\delta} \|\delta\|_{\rho} + \lambda f_{\theta}(\mathbf{x} + \delta) \\ & \text{s.t. } \mathbf{x} + \delta \in [0, 1]^{d} \end{split}$$

•
$$f_{\theta} : [0,1]^d \to \mathbb{R}$$
: $c_{\theta}(\mathbf{u}) = t$ iff $f_{\theta}(\mathbf{u}) < 0$
• $\epsilon = \|\delta\|_{\rho}$ is the attack strength

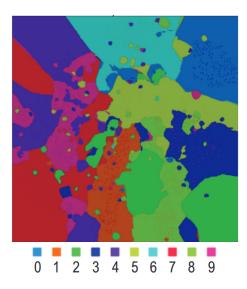
Ex: Binary SVM classification ($\theta = \mathbf{w}$)



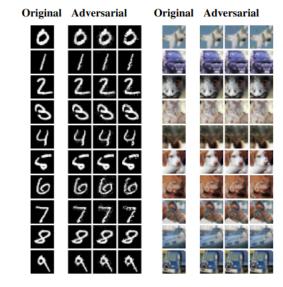
$$\begin{aligned} f_{\theta}(\mathbf{x}) &= \mathbf{w}^{T}\mathbf{x} - b, \\ c_{\theta}(\mathbf{x}) &= \operatorname{sign}(f_{\theta}) \end{aligned}$$

Motivation 00000

CNN trained on MNIST has particularly vulnerable decision regions



Rodrigues et al. Image-based visualization of classifier decision boundaries." IEEE Conf. Graphics, Patterns and Images, 2018.



Carlini, N. and Wagner, D., (2017). Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security and Privacy, pp. 39-57.

					Numerical experiments		
00000	00	0000	00000000	00000000	00000000	000	00
Advers	arial defen	se strategi	es				

- Adversarial detection AD¹
 - $\Rightarrow\,$ Useful for sensing an attack but not for mitigating its effect

¹J. Metzen, et al. On detecting adversarial perturbations. ICLR 2017.

²H. Zhang et al. Theoretically principled trade-off between robustness & accuracy. ICML 2019.

³J. Cohen et al. Certified adversarial robustness via randomized smoothing. ICML 2019

⁴Rebuffi et al. Data augmentation can improve robustness. NeurIPS 2021

⁵B. Sun et al. Adversarial defense by stratified convolutional sparse coding. CVPR 2019

 $^{^6\}text{N}.$ Papernot and P McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. arXiv:1803.04765, 2018.

Advers	arial defen	se strategi	ies				
00000		0000				000	00
Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary

- Adversarial detection AD¹
 - $\Rightarrow~$ Useful for sensing an attack but not for mitigating its effect
- Minimax robust training²
 - $\Rightarrow\,$ Can be overly conservative, reducing clean accuracy

¹J. Metzen, et al. On detecting adversarial perturbations. ICLR 2017.

²H. Zhang et al. Theoretically principled trade-off between robustness & accuracy. ICML 2019.

³J. Cohen et al. Certified adversarial robustness via randomized smoothing. ICML 2019

⁴Rebuffi et al. Data augmentation can improve robustness. NeurIPS 2021

⁵B. Sun et al. Adversarial defense by stratified convolutional sparse coding. CVPR 2019

 $^{^6\}text{N}.$ Papernot and P McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. arXiv:1803.04765, 2018.

Adversarial defense strategies							
00000	•0	0000	00000000	00000000	0000000	000	00
Motivation	Defensive DNN's		Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary

- Adversarial detection AD ¹
 - $\Rightarrow\,$ Useful for sensing an attack but not for mitigating its effect
- Minimax robust training²
 - $\Rightarrow\,$ Can be overly conservative, reducing clean accuracy
- Random smoothing smoothing³
 - \Rightarrow Additive isotropically random noise is image-agnostic

¹J. Metzen, et al. On detecting adversarial perturbations. ICLR 2017.

²H. Zhang et al. Theoretically principled trade-off between robustness & accuracy. ICML 2019.

³J. Cohen et al. Certified adversarial robustness via randomized smoothing. ICML 2019

⁴Rebuffi et al. Data augmentation can improve robustness. NeurIPS 2021

⁵B. Sun *et al.* Adversarial defense by stratified convolutional sparse coding. CVPR 2019

 $^{^6\}text{N}.$ Papernot and P McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. arXiv:1803.04765, 2018.

Adversarial defense strategies							
00000	•0	0000	00000000	00000000	0000000	000	00
Motivation	Defensive DNN's		Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary

- Adversarial detection AD 1
 - $\Rightarrow\,$ Useful for sensing an attack but not for mitigating its effect
- Minimax robust training²
 - $\Rightarrow\,$ Can be overly conservative, reducing clean accuracy
- Random smoothing smoothing³
 - \Rightarrow Additive isotropically random noise is image-agnostic
- Data augmentation CutMix, MixUp⁴
 - \Rightarrow Does not adapt over attack horizon

¹J. Metzen, et al. On detecting adversarial perturbations. ICLR 2017.

²H. Zhang et al. Theoretically principled trade-off between robustness & accuracy. ICML 2019.

³J. Cohen et al. Certified adversarial robustness via randomized smoothing. ICML 2019

⁴Rebuffi et al. Data augmentation can improve robustness. NeurIPS 2021

⁵B. Sun et al. Adversarial defense by stratified convolutional sparse coding. CVPR 2019

⁶N. Papernot and P McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. arXiv:1803.04765, 2018.

Advers	arial defen	se strategi	ies				
00000	•0	0000	00000000	00000000	0000000	000	00
Motivation	Defensive DNN's		Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary

- Adversarial detection AD ¹
 - $\Rightarrow\,$ Useful for sensing an attack but not for mitigating its effect
- Minimax robust training²
 - $\Rightarrow\,$ Can be overly conservative, reducing clean accuracy
- Random smoothing smoothing³
 - \Rightarrow Additive isotropically random noise is image-agnostic
- Data augmentation CutMix, MixUp⁴
 - \Rightarrow Does not adapt over attack horizon
- Dimensionality reduction and projection STL⁵
 - $\Rightarrow\,$ Sparse transformation layer projection can distort clean inputs

¹J. Metzen, et al. On detecting adversarial perturbations. ICLR 2017.

²H. Zhang et al. Theoretically principled trade-off between robustness & accuracy. ICML 2019.

³J. Cohen et al. Certified adversarial robustness via randomized smoothing. ICML 2019

⁴Rebuffi et al. Data augmentation can improve robustness. NeurIPS 2021

⁵B. Sun et al. Adversarial defense by stratified convolutional sparse coding. CVPR 2019

 $^{^6\}text{N}.$ Papernot and P McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. arXiv:1803.04765, 2018.

Advers	arial defen	se strategi	es				
00000	•0	0000	00000000	00000000	0000000	000	00
Motivation	Defensive DNN's		Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary

- Adversarial detection AD 1
 - $\Rightarrow\,$ Useful for sensing an attack but not for mitigating its effect
- Minimax robust training²
 - $\Rightarrow~$ Can be overly conservative, reducing clean accuracy
- Random smoothing smoothing³
 - \Rightarrow Additive isotropically random noise is image-agnostic
- Data augmentation CutMix, MixUp⁴
 - \Rightarrow Does not adapt over attack horizon
- Dimensionality reduction and projection STL⁵
 - $\Rightarrow\,$ Sparse transformation layer projection can distort clean inputs
- Deep adversarial learning networks DkNN⁶
 - $\Rightarrow\,$ geometrization by kNN's at each layer is limited to training samples

¹J. Metzen, *et al.* On detecting adversarial perturbations. ICLR 2017.

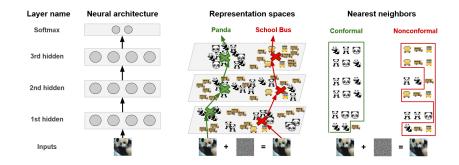
²H. Zhang et al. Theoretically principled trade-off between robustness & accuracy. ICML 2019.

³J. Cohen et al. Certified adversarial robustness via randomized smoothing. ICML 2019

⁴Rebuffi et al. Data augmentation can improve robustness. NeurIPS 2021

⁵B. Sun et al. Adversarial defense by stratified convolutional sparse coding. CVPR 2019

 $^{^6\}text{N}.$ Papernot and P McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning. arXiv:1803.04765, 2018.

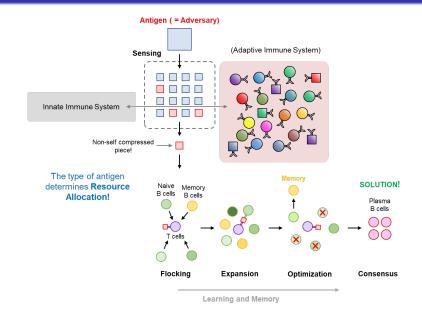


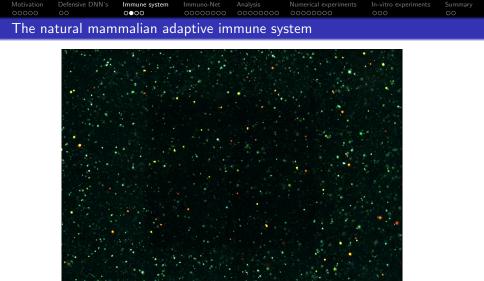
⁷N Papernot and P McDaniel. Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust Deep Learning. arXiv:1803.04765 2018

 $^{8}\mathrm{C}$ Sitawarin and D Wagner. On the robustness of deep k-nearest neighbors. In 2019 IEEE Security and Privacy Workshops (SPW), pp. 1-7. 2019

⁹C Sitawarin and D Wagner. Minimum-Norm Adversarial Examples on KNN and KNN-Based Models. arXiv preprint arXiv:2003.06559 (2020)

The natural mammalian immune system

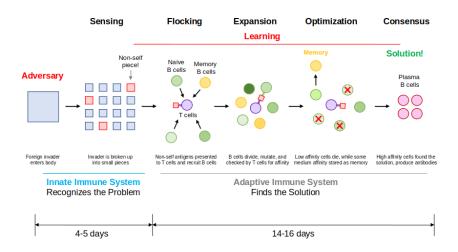




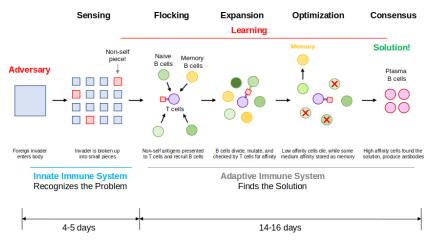
Microscopy image of proliferation of B-cells collected from mouse spleen. Colors denote different levels of B-cell receptor affinity to antigen.

Image credit: Walter Meixner, Rajapakse Lab, University of Michigan, 2022.

The natural mammalian immune system



The natural mammalian immune system



Proposal: Robust adversarial immune-inspired learning system (RAILS): a DNN adversarial defense method emulating mammalian immune system.

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00

Natural immune system and RAILS emulation

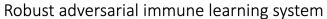
	Immune System	RAILS
Sensing	Classify between self and non- self antigens	Classify between non-adversarial and adversarial inputs using confidence scores
Flocking	Non-self antigens are presented to T cells, recruit highest affinity naïve B cells	Find the nearest neighbors that have the highest initial affinity score to the input data
Expansion	Naïve B cells divide and mutate to generate initial diversity	Generate new examples from the nearest neighbors through mutation and crossover and calculate each example's affinity score to the input
Optimization	Affinity is maximized through selection by T cells for affinity. Memory B cells are saved and Plasma B cells are created	Select generated examples with high-affinity scores to be Plasma data, and examples with moderate- affinity scores saved as Memory data
Consensus	Antigen is recognized by majority voting, producing high affinity B cells	Plasma data use majority voting for prediction

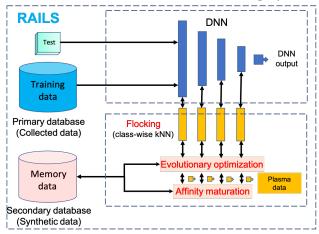
Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00

Natural immune system and RAILS emulation

	Immune System	RAILS
Sensing	Classify between self and non- self antigens	Classify between non-adversarial and adversarial inputs using confidence scores
Flocking	Non-self antigens are presented to T cells, recruit highest affinity naïve B cells	Find the nearest neighbors that have the highest initial affinity score to the input data
Expansion	Naïve B cells divide and mutate to generate initial diversity	Generate new examples from the <u>nearest neighbors</u> through <u>mutation</u> and <u>crossover</u> and <u>calculate</u> each example's affinity score to the input
Optimization	Affinity is maximized through selection by T cells for affinity. Memory B cells are saved and Plasma B cells are created	Select generated examples with high-affinity scores to be Plasma data, and examples with moderate- affinity scores saved as Memory data
Consensus	Antigen is recognized by majority voting, producing high affinity B cells	Plasma data use majority voting for prediction

Emulation occurs in a continuous loop, spawning new memory and plasma data as potentially adversarial antigens \mathbf{x} are sensed at input





Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.

Sensing: detect degree of unclassifiability of an input \mathbf{x}

 \Rightarrow Unclassifiability is measured using *confidence score* over *L* layers of DNN

$$score(\mathbf{x}) = \sum_{l=1}^{L} \alpha_l score_l(\mathbf{x}),$$
 (average cross-entropy)

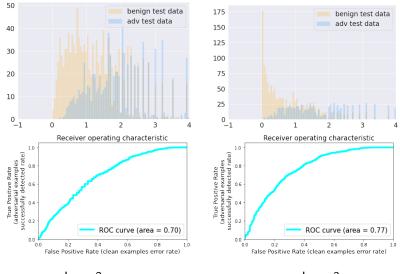
where $\{\alpha_l\}$ are convex combination weights on simplex $\sum_{l=1}^{L} \alpha_l = 1$, $\alpha_l \ge 0$ and score for *l*-th layer of DNN is defined as

$$score_{l}(\mathbf{x}) = -\sum_{c=1}^{C} F_{c}(\mathbf{x}) \log r_{c}(\mathbf{x})$$

with

- *F_c*(**x**) a DNN prediction score that label of **x** is in *c*-th class (logistic output of final layer)
- $r_c(\mathbf{x})$ the proportion of k-NN's of \mathbf{x} having class c labels in training set
- k-NN's computed relative to a distance or affinity measure A(x, x')

Sensing illustration (RAILS for CIFAR-10)



Layer 2

Layer 3

Immuno-Net: Flocking stage

Defensive DNN's

Flocking: find the *k*-NNs of **x** among $\{\mathbf{x}_j\}_{j:y_j=c}$ in each class $c \in [C]$

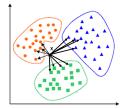
Immuno-Net

 \Rightarrow results in sets of k-NNs at each layer $l \in [L]$ for each class $c \in [C]$

$$\mathcal{N}_{k,l,c}(\mathbf{x}) = \{\mathbf{x}_{c,j_i} : i = 1,\ldots,k\}$$

where $A(\mathbf{x}, \mathbf{x}_j)$ are rank ordered affinity scores (possibly layer dependent) over the $n^c = |\{\mathbf{x}_j\}_{j:y_j=c}|$ instances in class c:

$$A(\mathbf{x},\mathbf{x}_{c,j_1}) \geq \ldots \geq A(\mathbf{x},\mathbf{x}_{c,j_n^c})$$



Motivation Defensive DNN's Immune system Immuno-Net Analysis Numerical experiments In-vitro experiments Summary 0000 000 0000 0000000 00000000 00000000 0000 000 000 Immuno-Net: Expansion and optimization stage Immuno-Net Immuno-Net

Expansion and optimization: From the *k*-NN's of **x** synthesize *B*-cells $^{\otimes}$

 \Rightarrow B-cells synthesized using *evolutionary optimization* within each class $c \in [C]$

Expansion and optimization: From the k-NN's of x synthesize *B*-cells ^{\otimes}

- \Rightarrow B-cells synthesized using *evolutionary optimization* within each class $c \in [C]$
 - Gather population from generation $g: \mathbf{X}_{c}^{g} = [\mathbf{x}_{c1}, \dots, \mathbf{x}_{cT}] \in \mathbb{R}^{d \times T}$

Immuno-Net: Expansion and optimization stage

Expansion and optimization: From the *k*-NN's of **x** synthesize *B*-cells \bigotimes

- \Rightarrow B-cells synthesized using *evolutionary optimization* within each class $c \in [C]$
 - Gather population from generation $g: \mathbf{X}_{c}^{g} = [\mathbf{x}_{c1}, \dots, \mathbf{x}_{cT}] \in \mathbb{R}^{d \times T}$
 - Randomly select columns of X^g_c with affinity-based preference

Immuno-Net

00000000

$$\hat{\mathbf{X}}_{c}^{g+1} = \mathbf{X}_{c}^{g} \mathbf{Z}_{c}^{g}, \ \ \mathbf{Z}_{c}^{g} \in \{0,1\}^{T imes T}$$

Numerical experiments

where columns of \mathbf{Z}^{g} are drawn from Mult $(1, \mathbf{p})$, $\mathbf{p} = [p(\mathbf{x}_{1}), \dots, p(\mathbf{x}_{T})]$

 $\mathbf{p}(\mathbf{x}_{cj}) = \mathsf{Softmax}(A(\mathbf{x}_{cj}, \mathbf{x})), \ j = 1, \dots, T.$

Summary

Immuno-Net: Expansion and optimization stage

Defensive DNN's

Expansion and optimization: From the *k*-NN's of **x** synthesize *B*-cells \otimes

- \Rightarrow B-cells synthesized using *evolutionary optimization* within each class $c \in [C]$
 - Gather population from generation $g: \mathbf{X}_c^g = [\mathbf{x}_{c1}, \dots, \mathbf{x}_{cT}] \in \mathbb{R}^{d \times T}$
 - Randomly select columns of X^g_c with affinity-based preference

Immuno-Net

00000000

$$\hat{\mathbf{X}}_{c}^{g+1} = \mathbf{X}_{c}^{g} \mathbf{Z}_{c}^{g}, \ \ \mathbf{Z}_{c}^{g} \in \{0,1\}^{T imes T}$$

Numerical experiments

where columns of \mathbf{Z}^{g} are drawn from Mult $(1, \mathbf{p})$, $\mathbf{p} = [p(\mathbf{x}_{1}), \dots, p(\mathbf{x}_{T})]$

$$\mathbf{p}(\mathbf{x}_{cj}) = \mathsf{Softmax}(A(\mathbf{x}_{cj}, \mathbf{x})), \ j = 1, \dots, T$$

Generate offspring of each column by crossover mating with x

$$\mathbf{x}_{\text{os}}' = \textit{Crossover}(\mathbf{x}_{c}, \mathbf{x}_{c}') = \begin{cases} \mathbf{x}_{c}^{(i)} & \text{with prob} \ \frac{A(f_{i}; \mathbf{x}_{c}, \mathbf{x})}{A(\mathbf{x}_{c}, \mathbf{x}) + A(\mathbf{x}_{c}', \mathbf{x})}, \\ \mathbf{x}_{c}'^{(i)} & \text{with prob} \ \frac{A(x_{c}, \mathbf{x})}{A(\mathbf{x}_{c}, \mathbf{x}) + A(\mathbf{x}_{c}', \mathbf{x})} \end{cases} \forall i \in [d],$$

Summary

Immuno-Net: Expansion and optimization stage

Defensive DNN's

Expansion and optimization: From the *k*-NN's of **x** synthesize *B*-cells \otimes

- \Rightarrow B-cells synthesized using *evolutionary optimization* within each class $c \in [C]$
 - Gather population from generation $g: \mathbf{X}_{c}^{g} = [\mathbf{x}_{c1}, \dots, \mathbf{x}_{cT}] \in \mathbb{R}^{d \times T}$
 - Randomly select columns of X^g_c with affinity-based preference

Immuno-Net

00000000

$$\hat{\mathbf{X}}_{c}^{g+1} = \mathbf{X}_{c}^{g} \mathbf{Z}_{c}^{g}, \quad \mathbf{Z}_{c}^{g} \in \{0,1\}^{T imes T}$$

Numerical experiments

where columns of Z^g are drawn from Mult(1, p), $p = [p(x_1), \dots, p(x_T)]$

$$\mathbf{p}(\mathbf{x}_{cj}) = \mathsf{Softmax}(A(\mathbf{x}_{cj}, \mathbf{x})), \ j = 1, \dots, T$$

Generate offspring of each column by crossover mating with x

$$\mathbf{x}_{\text{os}}' = \textit{Crossover}(\mathbf{x}_{c}, \mathbf{x}_{c}') = \begin{cases} \mathbf{x}_{c}^{(i)} & \text{with prob} \ \frac{A(f_{i}; \mathbf{x}_{c}, \mathbf{x})}{A(\mathbf{x}_{c}, \mathbf{x}) + A(\mathbf{x}_{c}', \mathbf{x})}, \\ \mathbf{x}_{c}'^{(i)} & \text{with prob} \ \frac{A(x_{c}, \mathbf{x})}{A(\mathbf{x}_{c}, \mathbf{x}) + A(\mathbf{x}_{c}', \mathbf{x})} \end{cases} \forall i \in [d],$$

• Randomly *mutate* each offspring with mutation probability ρ $\mathbf{x}_{os} = Mutation(\mathbf{x}'_{os}) = Clip_{[0,1]}(\mathbf{x}'_{os} + \mathbf{1}_{[Bernoulli}(\rho)]\mathbf{u}([-\delta_{max}, -\delta_{min}] \cup [\delta_{min}, \delta_{max}])$

Summary

Plasma B cells

Consensus: classify \$x\$ using fittest offspring, and update population

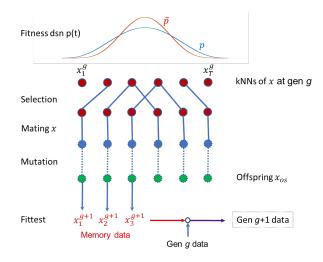
 \Rightarrow Stratify offspring $x_{\sf os}$ based on affinity to x

- Rank order affinity scores $A(\mathbf{x}_{os}, \mathbf{x})$ for all offspring \mathbf{x}_{os} in all classes $c \in [C]$
- Select top 5% of offspring as *plasma data* for majority vote on x
- Select top 25% of offspring as *memory data* to augment data for next generation.
- Merge memory data into generation g data, resulting in population update

 $\mathbf{X}_{c}^{g} \rightarrow \mathbf{X}_{c}^{g+1}$

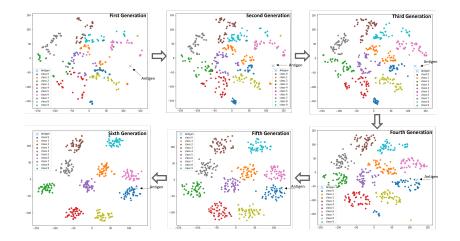
_							
00000	00	0000	00000000	00000000	0000000	000	00
Motivation	Defensive DNN's		Immuno-Net		Numerical experiments	In-vitro experiments	

Expansion and optimization graphical representation



Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	0000000	00000000	0000000	000	00

Plasma B-cell receptor evolution over 6 generations



gence anal				
		Numerical experiments 00000000	In-vitro experiments 000	Summary 00

Questions of interest

- Under what conditions does RAILS converge to an accurate and robust classification of a target x?
- What factors determine speed of convergence?
- What factors determine accuracy?
- What factors determine robustness?

Conver	gence anal	ysis				
	Defensive DNN's 00			Numerical experiments 00000000	In-vitro experiments 000	Summary 00

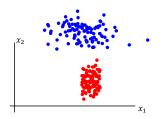
Questions of interest

- Under what conditions does RAILS converge to an accurate and robust classification of a target x?
- What factors determine speed of convergence?
- What factors determine accuracy?
- What factors determine robustness?

We have results for the case that RAILS is applied to the centroid classifier.

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
				0000000			
Centro	id classifie	r					

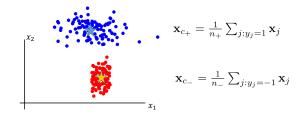
Collect samples for C = 2 classes (red and blue)



Tibshirani, Hastie, Narasimhan, Chu (2002). 'Diagnosis of multiple cancer types by shrunken centroids of gene expression'. Proceedings of the National Academy of Sciences. **99** (10): 6567–6572.

Collect samples for C = 2 classes (red and blue)

Compute centroids of each class (Stars)



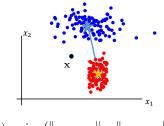
<u>Tibshirani</u>, Hastie, Narasimhan, Chu (2002). <u>'Diagnosis of multiple cancer types by shrunken centroids of gene</u> expression'. Proceedings of the National Academy of Sciences. **99** (10): 6567–6572.

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00
Centro	id classifie	r					

Collect samples for ${\cal C}=2$ classes (red and blue)

Compute centroids of each class (Stars)

Implement minimum distance classifier to classify \mathbf{x}



 $\hat{y}(\mathbf{x}) = \operatorname{sign}\left(\left\|\mathbf{x} - \mathbf{x}_{c_{-}}\right\| - \left\|\mathbf{x} - \mathbf{x}_{c_{+}}\right\|\right)$

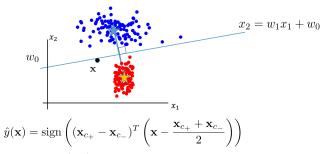
<u>Tibshirani</u>, Hastie, Narasimhan, Chu (2002). <u>'Diagnosis of multiple cancer types by shrunken centroids of gene</u> expression'. Proceedings of the National Academy of Sciences. **99** (10): 6567–6572.

Motivation	Defensive DNN's		Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
				00000000			
Centro	id classifie	r					

Collect samples for C = 2 classes (red and blue)

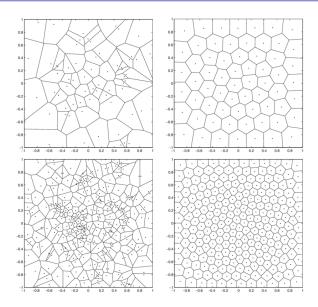
Compute centroids of each class (Stars)

Implement minimum distance classifier to classify \mathbf{x}



<u>Tibshirani</u>, Hastie, Narasimhan, Chu (2002). <u>'Diagnosis of multiple cancer types by shrunken centroids of gene</u> expression'. Proceedings of the National Academy of Sciences. **99** (10): 6567–6572.

Centroid classifier for C > 2 classes



Motivation Defensive DNN's Immune system Immuno-Net Analysis Numerical experiments In-vitro experiments Summary 00000 00 00000000 00000000 00000000 <

Convergence of RAILS centroid classifier

- Discrete alphabet inputs¢roids, **x** = [x₁,...,x_d], x_i ∈ {j/κ}_{j=1}^κ
- \mathbf{e}_c centroid of correct-class $y_i = c$ of input \mathbf{x}_i
- N: number of generations of B-cell expansion/optimization
- T: number of offspring per generation
- $\mu \in [0,1]$: mutation probability of an allele, uniform over $[\kappa]$
- H(e_c): Hamming erroneous class distance of x_i: ¹ min_{i:yi≠c} d_H(e_c, x_i)

Theorem (Capture time bound)

Assume that μ is sufficiently small such that $(1 - \mu)/(\mu/(\kappa - 1)) \ge 1$. Let $\delta \in (0, 1)$. Define $N^*(\delta)$, the number of generations required for the RAILS centroid classifier to produce an offspring in correct class $c \in \{1, ..., C\}$ of an input $\mathbf{x} \in \mathbb{R}^d$, with probability at least δ . Then the number of RAILS generations, with T draws per generation, satisfies the bound

$$N^*(\delta) \leq \max\left\{rac{1}{\mathcal{T}}rac{\mathsf{ln}\left(rac{1}{1-\delta}
ight)}{\mathsf{ln}\left(rac{1}{1-(\mathcal{H}(\mathbf{e}_c)+1)(\mu/(\kappa-1))^d}
ight)},1
ight\}.$$

 $^{{}^{1}}d_{H}(\mathbf{e}, \mathbf{x})$ is the number of alleles in \mathbf{e} and \mathbf{x} that disagree.

Motivation Defensive DNN's Immune system Immuno-Net Analysis Numerical experiments In-vitro experiments Summary 00000 00 0000000 00000000 00000000 000 000 00

Convergence for equipartitioned classes

- Equipartioned class assumption: $\min_i \|\mathbf{e}_c \mathbf{e}_i\| = C^{-1/d} b_1$
- Continuum limit: $\kappa \to \infty, \ \mu \to 0$ and $\mu/\kappa \to \rho$

Hamming/Euclidean distance relation for discrete alphabet $\mathbf{u}, \mathbf{v} \in [0, 1]^d$:

$$d_{H}(\mathbf{u},\mathbf{v}) \leq \|\mathbf{u}-\mathbf{v}\|^{2} \leq rac{1}{\kappa^{2}}d_{H}(\mathbf{u},\mathbf{v})$$

results in capture time bound

$$\mathcal{N}^*(\delta) \leq \max\left\{rac{1}{\mathcal{T}}rac{\mathsf{ln}\left(rac{1}{1-\delta}
ight)}{\mathsf{ln}\left(rac{1}{1-(1+C^{-2/d}b_1^2)
ho^d}
ight)},1
ight\}.$$

- For large d, N^{*}(δ) increases in ln C/d and decreases in ρ.
- Bound provides rules for selection of ρ as a function of C and d
- Bound only depends on expansion/optimization via mutation rate ho

Numer	ical experi	ments with	n image c	lata sets			
00000	00	0000	00000000	00000000	0000000	000	00
Motivation	Defensive DNN's		Immuno-Net		Numerical experiments		

Datasets evaluated: MNIST, CIFAR-10, CIFAR-100, SVHN

- MNIST
 - Number of images in dataset: 70000
 - Number of classes in dataset: 10
 - Number of pixels: 28 × 28
- CIFAR-10 and CIFAR-100
 - Number of images in dataset: 60000
 - Number of classes in dataset: 10 and 100, respectively.
 - Number of pixels: 32 × 32
- SVHN
 - Number of images in dataset: 600000
 - Number of classes in dataset: 10
 - Number of pixels: 32 × 32

 Motivation
 Defensive DNN's
 Immune system
 Immune-Net
 Analysis
 Numerical experiments
 In-vitro expr

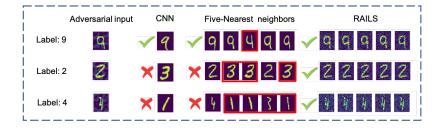
 00000
 00
 00000000
 00000000
 00000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

Samples (CW) from MNIST, SVHN, CIFAR-100, CIFAR-10 image data sets

Samples from the MNIST data set

airplane	Sure the	-	X	*	-	2	-4-		-	
automobile				3		-		-	*	
bird		1			-	1	3	2	4	
cat		-	3		1	2	Å.	No.	1	
deer	1	X	R		Y	Y	°.			
dog	1. A.	-		1		9	T'	1	No.	
frog	2 4	-		-		SP.	5		3	
horse		1	7	3	TAL	-	34	6	N I	
ship	-	dirin	-	M	-	Ż	197	ph-1	-	
truck	1	1					2-		1	

RAILS for MNIST ℓ_∞ PGD attack



CNN and KNN misclassify digits 2 and 4 while RAILS classifies all 3 correctly

Adversarial accuracy comparisons

- RAILS: 33.26%,
- CNN: 0%
- DkNN: 19.53%

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	00
RAILS	vs DkNN-	CNN (MN	IST)				

Table: **RAILS outperforms DkNN on single layers.** Standard Accuracy (SA)/Robust Accuracy (RA) performance of RAILS versus DkNN in single layer (MNIST).

		Input	Conv1	Conv2
SA	RAILS	97.53%	97.77%	97.78%
	DkNN	96.88%	97.4%	97.42%
RA	RAILS	93.78%	92.56%	89.29%
$(\epsilon = 40)$	DkNN	91.81%	90.84%	88.26%
RA	RAILS	88.83%	84.18%	73.42%
$(\epsilon = 60)$	DkNN	85.54%	81.01%	69.18%

 Motivation
 Defensive DNN's
 Immune system
 Immune-Net
 Analysis
 Numerical experiments
 In-vitro experiments
 Summary

 00000
 000
 0000
 0000000
 00000000
 00000000
 000
 000
 000

 RAILS improves robust accuracy on across benchmark CV datasets

Table: RAILS achieves higher robust accuracy (RA) at small cost of standard accuracy (SA) on MNIST, SVHN and CIFAR-10 as compared to CNN and DkNN.

		SA	RA
MNIST	RAILS (ours)	97.95%	76.67%
$(\epsilon = 60)$	CNN	99.16%	1.01%
	DkNN	97.99%	71.05%
SVHN	RAILS (ours)	90.62%	48.26%
$(\epsilon = 8)$	CNN	94.55%	1.66%
	DkNN	93.18%	35.7%
CIFAR-10	RAILS (ours)	82%	52.01%
$(\epsilon = 8)$	CNN	87.26%	32.57%
	DkNN	86.63%	41.69%

 Motivation
 Defensive DNN's
 Immune system
 Immune-Net
 Analysis
 Numerical experiments
 In-vitro experiments
 Summary

 00000
 000
 0000000
 00000000
 00000000
 000
 000
 000
 000

 RAILS has better adversarial resilience than previous methods

Table: **RAILS** achieves higher robust accuracy (**RA**) under eight types of attacks as compared to CNN and DkNN (CIFAR-10).

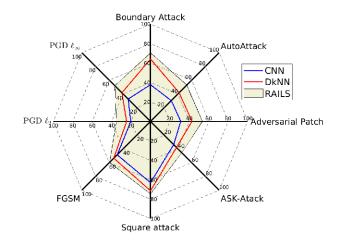
	RAILS	DkNN	CNN
ℓ_{∞} -PGD ($\epsilon = 8$)	52.01%	41.69%	32.57%
ℓ_2 -PGD ($\epsilon = 127.5$)	35.1%	24.64%	20.3%
FGSM ($\epsilon = 8$)	59.7%	53.46%	48.52%
Sq-Attack ($\epsilon=20$)	74.5%	71.3%	53.7%
Boundary Attack (ℓ_2)	70.6 %	64.2%	37.81%
AutoAttack ($\epsilon = 8$)	52.84%	41.77%	30.26%
Adv-P (ratio= 0.1)	53.5%	42.7%	31.14%
ASK-Attack ($\epsilon = 8$)	45.5%	37.8%	34.21%

Table: **RAILS** achieves higher robust accuracy (RA) than DkNN and CNN on CIFAR-100 under the 3 strongest attacks.

	RAILS	DkNN	CNN
ℓ_{∞} -PGD ($\epsilon = 8$)	41.35%	32.96%	23.7%
AutoAttack ($\epsilon = 8$)	42.84%	32.86%	25.63%
Boundary Attack (ℓ_2)	53 .6%	49.51%	29.1%

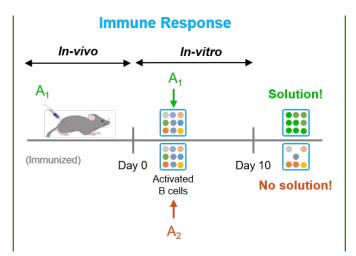
Wang at al. PAILS: A Pobust advorsarial immuno inspired learning system. IEEE Access. Mar 2022

RAILS has better adversarial resilience than previous methods

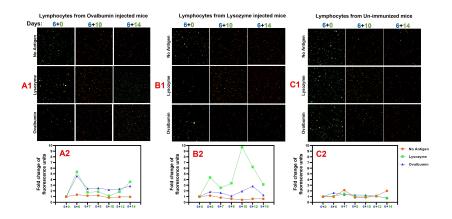


Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.

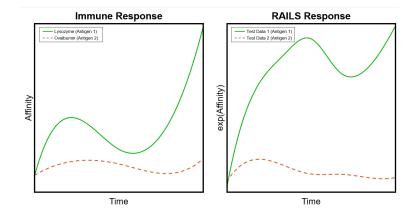
In vitro experiment



In vitro experimental outcome



Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.



Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.

Motivation	Defensive DNN's	Immune system	Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary
00000	00	0000	00000000	00000000	0000000	000	•0

Immune-System vs RAILS: Summary of Correspondences

Table: A one-to-one mapping from the immune system to RAILS.

	Immune System	RAILS	
Antigen	A molecule or molecular structure (self/non-self)	Test example (benign/adversarial)	
Affinity	The strength of a single bond or interaction between antigen and B-Cell	The negative Euclidean distance between feature maps of input and another data point	
Naive B-cells The B-cells that have been recruited to generate new B-cells		The k-nearest neighbors from each class with highest affinity to the antigen	
Plasma B-cells Newly generated B-cells with top affinity to the antigen		Newly generated examples with top affinity to the input	
Memory B-cells	Generated B-cells with moderate-affinity to the antigen	Generated examples with moderate-affinity to the input	
	Immune System	RAILS	
Sensing	Classify between self and non-self antigens	Classify between non-adversarial and adversarial inputs using confidence scores	
Flocking Non-self antigens are presented to T cells, recruit highest affinity naive B-cells		Find the nearest neighbors from each class that have the highest initial affinity score to the input data	
Affinity maturation	Naive B-cells divide and mutate to generate initial diversity. Affinity is maximized through selection by T cells for affinity.	Generate new examples from the nearest neighbors through <i>mutation</i> and crossover and calculate each example's affinity score to the input Affinity is maximized through selection.	
Consensus	Memory B-cells are saved and Plasma B-cells are created. Antigen is recognized by majority voting , producing high affinity B-cells	Select generated examples with high-affinity scores to be <i>Plasma data</i> , and examples with moderate-affinity scores saved as <i>Memory data</i> . <i>Plasma data</i> use majority voting for prediction	

Summary comments and perspectives								
00000	00	0000	00000000	00000000	0000000	000	00	
Motivation	Defensive DNN's		Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary	

Adaptive immune system emulation for robustifying machine learning

- Robust adaptve immune-inspired learning system (RAILS) emulates
 - sensing
 - Ø flocking
 - 3 clonal expansion
 - 4 consensus
- RAILS dkNN-CNN: consensus of B-cell affinity maturation at each layer
- RAILS dkNN-CNN: improves resilience to different types of attacks
- RAILS dkNN-CNN: mimics diversity vs selectivity of natural immune system
- RAILS centroid classifier: convergence with high probability established

Summary comments and perspectives								
00000	00	0000	00000000	00000000	0000000	000	00	
Motivation	Defensive DNN's		Immuno-Net	Analysis	Numerical experiments	In-vitro experiments	Summary	

Adaptive immune system emulation for robustifying machine learning

- Robust adaptve immune-inspired learning system (RAILS) emulates
 - sensing
 - Ø flocking
 - 3 clonal expansion
 - 4 consensus
- RAILS dkNN-CNN: consensus of B-cell affinity maturation at each layer
- RAILS dkNN-CNN: improves resilience to different types of attacks
- RAILS dkNN-CNN: mimics diversity vs selectivity of natural immune system
- RAILS centroid classifier: convergence with high probability established

Some interesting questions

- Immuno-mimetic attackers dynamic adversarial attack strategies
- DNN autoimmune disease can RAILS be tricked into "attacking" its own cells?
- In-silico innoculation and boosting periodic introduction of synthetic attacks