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Machine learning vulnerabilities

kNN classifier

SVM classifier

CNN classifier

Clean inputs(Top). Adversarial inputs(Bottom)
Guo, et al, ”A Black-Box Attack Method against Machine-Learning-Based
Anomaly Network Flow Detection Models,” Security and Communication
Networks, 2021
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Threat models

Attacks are characterized along various axes

• Attack during testing (evasion) vs attack during training (poisoning)

• Targeted vs untargeted attacks

• Information available to attacker on classifier algorithm

• Attack strength and perceptual saliency

• Number of steps: #attacker-evaluations of classifier function

White box evasion attacks: attacker has knowledge of classifier function

• Projected Gradient Descent (PGD): optimize attack wrt misclassification
criterion

• Fast Gradient Sign Method (FGSM): a faster (approximate) PGD

• Auto-Attack: a multi-level attack

Black box evasion attacks: attacker has no knowledge of classifier function

• Gradient-free attack, e.g., using BFGS optimizer

• Square attack

• Boundary attack

• Adversarial patch attack
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The targeted ℓp adversarial attack

Labeled training data {(xj , yj)}nj=1

• Features: xj ∈ [0, 1]d

• Class labels: yj ∈ [C ]
def
= {1, . . . ,C}

Classifier optimized over training data

• Classifier function: cθ : [0, 1]d → [C ]

• Classifier tuning parameters: θ ∈ IRq

• Loss function: l : [C ]× [C ] → IR

• Fitting criterion: minθ L(θ),
L(θ) =

∑n
j=1 l(cθ(xj), yj)

Targeted ℓp adversarial attack on classifer

• Try to perturb x towards target class t
⇒ cθ(x+ δ) = t, where

δ = amaxδ∥δ∥p + λfθ(x+ δ)

s.t. x+ δ ∈ [0, 1]d

• fθ : [0, 1]d → IR: cθ(u) = t iff fθ(u) < 0

• ϵ = ∥δ∥p is the attack strength

Ex: Binary SVM classification (θ = w)

fθ(x) = wTx− b,

cθ(x) = sign(fθ)
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CNN trained on MNIST has particularly vulnerable decision regions

Rodrigues et al. Image-based visualization of classifier decision boundaries.” IEEE Conf. Graphics, Patterns and Images, 2018.
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Illustration: ℓp adversarial attack (p = 2,∞, 0)

Carlini, N. and Wagner, D., (2017). Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security and
Privacy, pp. 39-57.
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Adversarial defense strategies

• Adversarial detection - AD 1

⇒ Useful for sensing an attack but not for mitigating its effect

• Minimax robust training2

⇒ Can be overly conservative, reducing clean accuracy

• Random smoothing - smoothing3

⇒ Additive isotropically random noise is image-agnostic

• Data augmentation - CutMix, MixUp4

⇒ Does not adapt over attack horizon

• Dimensionality reduction and projection - STL5

⇒ Sparse transformation layer projection can distort clean inputs

• Deep adversarial learning networks - DkNN6

⇒ geometrization by kNN’s at each layer is limited to training samples

1J. Metzen, et al. On detecting adversarial perturbations. ICLR 2017.
2H. Zhang et al. Theoretically principled trade-off between robustness & accuracy. ICML 2019.
3J. Cohen et al. Certified adversarial robustness via randomized smoothing. ICML 2019
4Rebuffi et al. Data augmentation can improve robustness. NeurIPS 2021
5B. Sun et al. Adversarial defense by stratified convolutional sparse coding. CVPR 2019
6N. Papernot and P McDaniel. Deep k-nearest neighbors: Towards confident, interpretable and

robust deep learning. arXiv:1803.04765, 2018.
11
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A deep adversarial learning network: the deep kNN (DkNN) 7 8 9

7N Papernot and P McDaniel. Deep k-Nearest Neighbors: Towards Confident,Interpretable and
Robust Deep Learning. arXiv:1803.04765 2018

8C Sitawarin and D Wagner. On the robustness of deep k-nearest neighbors. In 2019 IEEE
Security and Privacy Workshops (SPW), pp. 1-7. 2019

9C Sitawarin and D Wagner. Minimum-Norm Adversarial Examples on KNN and KNN-Based
Models. arXiv preprint arXiv:2003.06559 (2020)
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The natural mammalian immune system

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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The natural mammalian adaptive immune system

Microscopy image of proliferation of B-cells collected from mouse spleen.
Colors denote different levels of B-cell receptor affinity to antigen.

Image credit: Walter Meixner, Rajapakse Lab, University of Michigan, 2022.
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The natural mammalian immune system

Proposal: Robust adversarial immune-inspired learning system (RAILS): a
DNN adversarial defense method emulating mammalian immune system.

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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Natural immune system and RAILS emulation

Emulation occurs in a continuous loop, spawning new memory and plasma data
as potentially adversarial antigens x are sensed at input
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Immuno-Net: RAILS applied to a DNN

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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Immuno-Net: Sensing stage

Sensing: detect degree of unclassifiability of an input x

⇒ Unclassifiability is measured using confidence score over L layers of DNN

score(x) =
L∑

l=1

αlscorel(x), (average cross-entropy)

where {αl} are convex combination weights on simplex
∑L

l=1 αl = 1, αl ≥ 0
and score for l-th layer of DNN is defined as

scorel(x) = −
C∑

c=1

Fc(x)logrc(x)

with

• Fc(x) a DNN prediction score that label of x is in c-th class (logistic
output of final layer)

• rc(x) the proportion of k-NN’s of x having class c labels in training set

• k-NN’s computed relative to a distance or affinity measure A(x, x′)

18
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Sensing illustration (RAILS for CIFAR-10)

Layer 2 Layer 3
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Immuno-Net: Flocking stage

Flocking: find the k-NNs of x among {xj}j :yj=c in each class c ∈ [C ]

⇒ results in sets of k-NNs at each layer l ∈ [L] for each class c ∈ [C ]

Nk,l,c(x) = {xc,ji : i = 1, . . . , k}

where A(x, xj) are rank ordered affinity scores (possibly layer dependent) over

the nc = |{xj}j :yj=c | instances in class c:

A(x, xc,j1) ≥ . . . ≥ A(x, xc,jnc )

20
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Immuno-Net: Expansion and optimization stage

Expansion and optimization: From the k-NN’s of x synthesize B-cells

⇒ B-cells synthesized using evolutionary optimization within each class c ∈ [C ]

• Gather population from generation g : Xg
c = [xc1, . . . , xcT ] ∈ IRd×T

• Randomly select columns of Xg
c with affinity-based preference

X̂g+1
c = Xg

cZ
g
c , Zg

c ∈ {0, 1}T×T

where columns of Zg are drawn from Mult(1, p), p = [p(x1), . . . , p(xT )]

p(xcj) = Softmax(A(xcj , x)), j = 1, . . . ,T .

• Generate offspring of each column by crossover mating with x

x′os = Crossover(xc , x
′
c) =

{
x(i)c with prob A(fl ;xc ,x)

A(xc ,x)+A(x′c ,x)
,

x′(i)c with prob
A(x′c ,x)

A(xc ,x)+A(x′c ,x)

∀i ∈ [d ],

• Randomly mutate each offspring with mutation probability ρ

xos = Mutation(x′os) = Clip[0,1]
(
x′os + 1[Bernoulli(ρ)]u([−δmax,−δmin] ∪ [δmin, δmax])

)
,

21
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Immuno-Net: Consensus

Consensus: classify x using fittest offspring, and update population

⇒ Stratify offspring xos based on affinity to x

• Rank order affinity scores A(xos, x) for all offspring xos in all classes c ∈ [C ]

• Select top 5% of offspring as plasma data for majority vote on x

• Select top 25% of offspring as memory data to augment data for next
generation.

• Merge memory data into generation g data, resulting in population update

Xg
c → Xg+1

c
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Expansion and optimization graphical representation
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Plasma B-cell receptor evolution over 6 generations
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Convergence analysis

Questions of interest

• Under what conditions does RAILS converge to an accurate and robust
classification of a target x?

• What factors determine speed of convergence?

• What factors determine accuracy?

• What factors determine robustness?

We have results for the case that RAILS is applied to the centroid classifier.
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Centroid classifier

EECS 545 – Fall 2021- Alfred Hero 2
Tibshirani, Hastie, Narasimhan, Chu (2002). "Diagnosis of multiple cancer types by shrunken centroids of gene 
expression". Proceedings of the National Academy of Sciences. 99 (10): 6567–6572.

𝑥𝑥2

𝑥𝑥1
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Centroid classifier

EECS 545 – Fall 2021- Alfred Hero 3
Tibshirani, Hastie, Narasimhan, Chu (2002). "Diagnosis of multiple cancer types by shrunken centroids of gene 
expression". Proceedings of the National Academy of Sciences. 99 (10): 6567–6572.
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Centroid classifier

EECS 545 – Fall 2021- Alfred Hero 4
Tibshirani, Hastie, Narasimhan, Chu (2002). "Diagnosis of multiple cancer types by shrunken centroids of gene 
expression". Proceedings of the National Academy of Sciences. 99 (10): 6567–6572.
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Centroid classifier

EECS 545 – Fall 2021- Alfred Hero 5
Tibshirani, Hastie, Narasimhan, Chu (2002). "Diagnosis of multiple cancer types by shrunken centroids of gene 
expression". Proceedings of the National Academy of Sciences. 99 (10): 6567–6572.
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𝑥𝑥1
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Centroid classifier for C > 2 classes
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Convergence of RAILS centroid classifier

• Discrete alphabet inputs&centroids, x = [x1, . . . , xd ], xi ∈ {j/κ}κj=1

• ec centroid of correct-class yi = c of input xi
• N: number of generations of B-cell expansion/optimization

• T : number of offspring per generation

• µ ∈ [0, 1]: mutation probability of an allele, uniform over [κ]

• H(ec): Hamming erroneous class distance of xi :
1 mini :yi ̸=c dH(ec , xi )

Theorem (Capture time bound)

Assume that µ is sufficiently small such that (1− µ)/(µ/(κ− 1)) ≥ 1. Let
δ ∈ (0, 1). Define N∗(δ), the number of generations required for the RAILS
centroid classifier to produce an offspring in correct class c ∈ {1, . . . ,C} of an
input x ∈ IRd , with probability at least δ. Then the number of RAILS
generations, with T draws per generation, satisfies the bound

N∗(δ) ≤ max

 1

T

ln
(

1
1−δ

)
ln
(

1
1−(H(ec )+1)(µ/(κ−1))d

) , 1
 .

1dH (e, x) is the number of alleles in e and x that disagree.
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Convergence for equipartitioned classes

• Equipartioned class assumption: mini ∥ec − ei∥ = C−1/db1

• Continuum limit: κ → ∞, µ → 0 and µ/κ → ρ

Hamming/Euclidean distance relation for discrete alphabet u, v ∈ [0, 1]d :

dH(u, v) ≤ ∥u− v∥2 ≤ 1

κ2
dH(u, v)

results in capture time bound

N∗(δ) ≤ max

 1

T

ln
(

1
1−δ

)
ln
(

1

1−(1+C−2/db21)ρ
d

) , 1
 .

• For large d , N∗(δ) increases in lnC/d and decreases in ρ.

• Bound provides rules for selection of ρ as a function of C and d

• Bound only depends on expansion/optimization via mutation rate ρ
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Numerical experiments with image data sets

Datasets evaluated: MNIST, CIFAR-10, CIFAR-100, SVHN
• MNIST

• Number of images in dataset: 70000
• Number of classes in dataset: 10
• Number of pixels: 28× 28

• CIFAR-10 and CIFAR-100
• Number of images in dataset: 60000
• Number of classes in dataset: 10 and 100, respectively.
• Number of pixels: 32× 32

• SVHN
• Number of images in dataset: 600000
• Number of classes in dataset: 10
• Number of pixels: 32× 32
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Samples (CW) from MNIST, SVHN, CIFAR-100, CIFAR-10 image data sets
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RAILS for MNIST ℓ∞ PGD attack

CNN and KNN misclassify digits 2 and 4 while RAILS classifies all 3 correctly

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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RAILS for CIFAR-10 human perceptible ℓ∞ PGD attack

Adversarial accuracy comparisons

• RAILS: 33.26%,

• CNN: 0%

• DkNN: 19.53%

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.

36



Motivation Defensive DNN’s Immune system Immuno-Net Analysis Numerical experiments In-vitro experiments Summary

RAILS vs DkNN-CNN (MNIST)

Table: RAILS outperforms DkNN on single layers. Standard Accuracy (SA)/Robust
Accuracy (RA) performance of RAILS versus DkNN in single layer (MNIST).

Input Conv1 Conv2
SA RAILS 97.53% 97.77% 97.78%

DkNN 96.88% 97.4% 97.42%
RA RAILS 93.78% 92.56% 89.29%
(ϵ = 40) DkNN 91.81% 90.84% 88.26%
RA RAILS 88.83% 84.18% 73.42%
(ϵ = 60) DkNN 85.54% 81.01% 69.18%

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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RAILS improves robust accuracy on across benchmark CV datasets

Table: RAILS achieves higher robust accuracy (RA) at small cost of standard
accuracy (SA) on MNIST, SVHN and CIFAR-10 as compared to CNN and DkNN.

SA RA
MNIST RAILS (ours) 97.95% 76.67%
(ϵ = 60) CNN 99.16% 1.01%

DkNN 97.99% 71.05%
SVHN RAILS (ours) 90.62% 48.26%
(ϵ = 8) CNN 94.55% 1.66%

DkNN 93.18% 35.7%
CIFAR-10 RAILS (ours) 82% 52.01%
(ϵ = 8) CNN 87.26% 32.57%

DkNN 86.63% 41.69%

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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RAILS has better adversarial resilience than previous methods

Table: RAILS achieves higher robust accuracy (RA) under eight types of attacks as
compared to CNN and DkNN (CIFAR-10).

RAILS DkNN CNN
ℓ∞-PGD (ϵ = 8) 52.01% 41.69% 32.57%
ℓ2-PGD (ϵ = 127.5) 35.1% 24.64% 20.3%
FGSM (ϵ = 8) 59.7% 53.46% 48.52%
Sq-Attack (ϵ = 20) 74.5% 71.3% 53.7%
Boundary Attack (ℓ2) 70.6% 64.2% 37.81%
AutoAttack (ϵ = 8) 52.84% 41.77% 30.26%
Adv-P (ratio= 0.1) 53.5% 42.7% 31.14%
ASK-Attack (ϵ = 8) 45.5% 37.8% 34.21%

Table: RAILS achieves higher robust accuracy (RA) than DkNN and CNN on
CIFAR-100 under the 3 strongest attacks.

RAILS DkNN CNN
ℓ∞-PGD (ϵ = 8) 41.35% 32.96% 23.7%
AutoAttack (ϵ = 8) 42.84% 32.86% 25.63%
Boundary Attack (ℓ2) 53.6% 49.51% 29.1%

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022. 39
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RAILS has better adversarial resilience than previous methods

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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In vitro experiment

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.

41



Motivation Defensive DNN’s Immune system Immuno-Net Analysis Numerical experiments In-vitro experiments Summary

In vitro experimental outcome

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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Learning curve of RAILS emulates learning curve of immune response

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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Immune-System vs RAILS: Summary of Correspondences

Table: A one-to-one mapping from the immune system to RAILS.

Immune System RAILS

Antigen A molecule or molecular structure (self/non-self) Test example (benign/adversarial)

Affinity
The strength of a single bond or interaction

between antigen and B-Cell
The negative Euclidean distance between

feature maps of input and another data point

Naive B-cells
The B-cells that have been recruited

to generate new B-cells
The k-nearest neighbors from each class

with highest affinity to the antigen

Plasma B-cells
Newly generated B-cells with
top affinity to the antigen

Newly generated examples with
top affinity to the input

Memory B-cells
Generated B-cells with

moderate-affinity to the antigen
Generated examples with

moderate-affinity to the input

Immune System RAILS

Sensing Classify between self and non-self antigens
Classify between non-adversarial and adversarial inputs

using confidence scores

Flocking
Non-self antigens are presented to T cells,

recruit highest affinity naive B-cells
Find the nearest neighbors from each class

that have the highest initial affinity score to the input data

Affinity maturation

Naive B-cells divide and mutate
to generate initial diversity.

Affinity is maximized through selection
by T cells for affinity.

Generate new examples from the nearest neighbors
through mutation and crossover

and calculate each example’s affinity score to the input
Affinity is maximized through selection.

Consensus

Memory B-cells are saved
and Plasma B-cells are created.

Antigen is recognized by majority voting,
producing high affinity B-cells

Select generated examples with
high-affinity scores to be Plasma data,

and examples with moderate-affinity scores
saved as Memory data.

Plasma data use majority voting for prediction

Wang et al. RAILS: A Robust adversarial immune-inspired learning system. IEEE Access, Mar 2022.
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Summary comments and perspectives

Adaptive immune system emulation for robustifying machine learning
• Robust adaptve immune-inspired learning system (RAILS) emulates

1 sensing
2 flocking
3 clonal expansion
4 consensus

• RAILS dkNN-CNN: consensus of B-cell affinity maturation at each layer
• RAILS dkNN-CNN: improves resilience to different types of attacks
• RAILS dkNN-CNN: mimics diversity vs selectivity of natural immune

system
• RAILS centroid classifier: convergence with high probability established

Some interesting questions

• Immuno-mimetic attackers - dynamic adversarial attack strategies
• DNN autoimmune disease - can RAILS be tricked into ”attacking” its own

cells?
• In-silico innoculation and boosting - periodic introduction of synthetic

attacks
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