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The Four Waves of Rl

First Wave

Second Wave

Third Wave

Fourth Wave

c. 1970s - 1990s

c. 2000s - present
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est. 2030s —

Good at reasoning, but no
ability to learn or
generalize.

* GOFAI - "Good OlId
Fashioned AL."

» Symbolic, heuristic, rule
based.

* Handcrafted knowledge,
"expert systems."

Good at learning and
perceiving, but minimal
ability to reason or
generalize.

« Statistical learning, "deep
neural nets, CNNs, RNNs.

* Advanced text, speech,
language and vision
processing.

Excellent at perceiving,
learning and reasoning,
and able to generalize.

» Contextual adaptation,
able to explain decisions.

» Can converse in natural
language.

* Requires far fewer data
samples for training.

 Able to learn and function
with minimal supervision.

8 SingularityNET
®
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Able to perform any
intellectual task that a
human can.

* AGI (Artificial General
Intelligence), possibly
leading to ASI (Artificial
Superintelligence) and the
"Technological Singularity."
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Six Kin Development (adapted from DARPA's "Three Waves of Al")




Artificial Intelligence: Image Coloring

100 year old pictures...

Credit to ColdFusion



Reinforcement Learning in AlphaGo

Credit to DeepMind



Standard Neural Network

Credit to Ramin Hasani, MIT.



COVID 19 Pandemic

Prediction Uncertainty
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Outline:

Incorporate Physics Knowledge and Al to design new
Interpretable models

Incorporate Physics Knowledge into Al to predict multiscale problems:
NH-PINN

Interpretable Al enables data-driven scientific discovery with
uncertainty quantification capability — ALZHEIMER'’s Disease
Prediction

Sparse Neural Architecture Design with quantified uncertainties

Scalable training large-scale Deep Neural Network



How to incorporate Physics Knowledge and Al to
design new interpretable models? - Interpretable
Al for Science

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and predictability of integer-
and fractional-order epidemiological models using physics-informed neural networks, Nature Computational
Science, 1, 744-753, 2021

2. ShengZhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for building trustworthy
data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLoS
Computional Biology 17(9): e1009334. https://doi.org/10.1371/journal.pcbi. 1009334



Predicting the COVID-19 pandemic
with uncertainties using trustworthy
data-driven epidemiological models

Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and predictability of integer-
and fractional-order epidemiological models using physics-informed neural networks, Nature Computational

Science, 1, 744-753, 2021

2. ShengZhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for building trustworthy
data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLoS
Computional Biology 17(9): €1009334. https://doi.org/10.1371/journal.pcbi.1009334
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A general framework for building a trustworthy data-driven epidemiological model

Unique parameters Prediction only

@M () (11D) Iv)

Sensitivity
analysis analysis

Data acquisition T Epidemiological Segg 4. (ifiability Identifiable?
and event model

timeline development

(VII) (VD)

V)
Forecasting with Model Model
uncertainties robustness

. . calibration
and scenarios analysis

Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for
building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak
in New York City, PLoS Computional Biology 17(9): e1009334.
https://doi.org/10.1371/journal.pcbi.1009334



New York City COVID-19 related Event Timeline

Calibrate piecewise-constant model parameters to capture local epidemiological dynamics

N &
«° X
c.~°° ,\«"’ @"’" Mask Indoor dining Indoor dining
L @ o mandate reopens closes
7000 I | | 09 /3:) /20 Vaccination
03/21/20 04/17/20 06/08/20 Reopening begins
phases 1-4
12/14/20

5250 -
.
>
T e -
5 35l
a3
&
=

1750 -

0
o o W o ® ') o
Q}qs’ \(E’ fb{& \"IS’ ’J” Q v N ,b\'b N
& & & & & F ¢ ¢ ©



New York City COVID-19 related Event Timeline
Calibrate piecewise-constant model parameters to capture local epidemiological dynamics
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Epidemiological Model Deve
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Calibrated COVID-19 Transmission Rate for New York City

Calibrate piecewise-constant model parameters to capture local epidemiological dynamics
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Forecasting with Uncertainties and Scenarios

No indoor dining
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Physics Informed Neural Networks (PINNS)

Forward

N()

O Solution/Data
o o) (inm) O (R = (£(u). V)a~(f.v)n v

(Fractional) Model: Y00 | / o

A M) H_ : \\ * *

Inverse

® .4 A (non-local) differential operator with parameters A

A flexible computational tool to study model uncertainty
Incorporate data and different models
Accurate fitting to data

Inferring model parameters and discovering unobserved dynamics

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and

predictability of integer- and fractional-order epidemiological models using physics-
informed neural networks, Nature Computational Science, 1, 744-753, 2021



Different Epidemiological Models

Integer-Order Models (simple to complex models) B
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Fractional-Order and Time-Delay Models (add memory effects) B |
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PINNSs for (Fractional) Epidemiological Models

Fitting data and discovering unobserved compartments

Inferring model parameters || Solving system of ODEs

Nu
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PINN Results: Model Uncertainty based on NYC dataset
Fitting the data accurately Discovering unobserved dynamics Inferring model parameters
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Fractional Order Models Introduce Memory in the Dynamics

Caputo fractional derivative of order x € (0,1): a convolution type integro-differential operator
1 jt 1 du(s) ;
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Summary

This is the first work to employ structural and practical identifiability tools to
study COVID-19 model identifiability based on the available data.

A general data-driven epidemiological modeling framework is developed, which
seamlessly integrates model identifiability, model sensitivity analysis, model
calibration, model prediction with confidence intervals, and evaluating control
strategies under uncertainties.

We treat beta (transmission rate), p (proportion of isolated individuals), and q
(proportion of disease-related deaths) as time-dependent piece-wise model
parameters and calibrate them using the available New York City COVID-19
dataset.

The developed COVID-19 model is employed to evaluate the effects of
vaccination deployment scenarios.

We developed a flexible computational framework using physics-informed
neural networks (PINNSs) to study model uncertainty and discover time-
dependent parameters.



Outline:

Incgrplnorate Physics Knowledge and Al to design new interpretable
models

Incorporate Physics Knowledge into Al to predict multiscale
problems: NH-PINN

Interpretable Al enables data-driven scientific discovery with
uncertainty quantification capability — ALZHEIMER'’s Disease
Prediction

Sparse Neural Architecture Design with quantified uncertainties

Scalable training large-scale Deep Neural Network



NH-PINN: Neural homogenizationbased the
physics-informed neural network for the

multiscale problems

Wing Tat Leung, Guang Lin, Zecheng Zhang, NH-PINN: Neural homogenization
based Physics-informed Neural Network for Multiscale Problems, 2022,
https://arxiv.org/abs/2108.12942



@ Physics-informed nerual network (PINN)

© Homogenization

© Neural homogenization based PINN (NH-PINN)
Q@ Numerical examples

Wing Tat Leung, Guang Lin, Zecheng Zhang. NH-PINN: Neural homogenization
based the physics-informed neural network for the multiscale problems.
arXiv:2108.12942.



Physics-informed nerual network (PINN)

L(u)= finQ
B(u) = b on 012

where L is a differential operator and B is the boundary condition operator. f is
the given source term, b is the given boundary condition.

‘ w
mm—Z\ﬁ Fs(pi)) ZZ\B (Fa(q:)) — b(a)]?, (1)

where w; + wy = 1 are the positive weights; {p;} C €2, {¢;} C 0Q and Ny, N, are
the number of points used in discretizing the domain and boundary respectively,
F5(-) is the network and /3 is the parameters associated with the network.



— V- (kVu(z)) = f,z € Q,
u =0,z € J1,

where 2 = [0, 7| and f =sin(z), k(x) = 0.5sin(27x/€) + 2, where € =

GO =

Classical PINN and reference solution Relative error {classical PINN)

Figure: Left: demonstration of the permeability x(z) = 0.5sin(27x/€) + 2, where
e = 1/8. Middle: learnt solution by the classical PINN vs the reference solution. Right:

relative error as a function of the training epochs. The average error of the last 500
epochs is 0.987471.



Homogenization

Consider we are solving:

S G LR 0) B )
with u.(x) = 0 on 9€2. The asymptotic expansion:
Ue = Up + €Ul + € us + ... (3)
@ Solve the cell problem:
e (W5 ) = o) (@
X is periodic in y with mean 0. (5)

© Solve the homogenized equation:

o (. 8\
5 (%5, )= )

where aj; = [y (aij + ain 5= d’b" Yy




Neural homogenization based PINN (NH-PINN)

Proposed NH-PINN:

@ Solve the cell problems using PINN.
© Evaluate the homogenized coefficients.
@ Solve the homogenized equation using PINN.

Oversampling (to improve PINN accuracy for solving periodic problems):

Figure: Oversampling mesh demonstration.

Suppose w; + w9 + w3 = 1 are positive constants, the new loss function:

wq

min {— Z IL(Fa(pi)) — f(pi)l° + wa|(Fp(qr) — Fplge)|?

3 —
1=1

No
w: = € : righ right
S (I(F.a(qi 1Y Fal T2 + |(Fa(@™) — Fap! g’“)F)}-



Notations for the numerical examples

Solution notation  Cell problems solver Homogenized equation solver
p(x) PINN PINN
v(x) FEM FEM
w(x) PINN FEM

Table: Notations of the solutions. u. which is not listed here is the reference solution
which solves the multiscale PDE directly by fine scale finite element methods.

Relative errors:

_ lp(z) —uc(@)l| ~_ [w(z) —ue(z)]
luell lue()|
_ p(@) —wlz)|| _ [Jv(z) —uc(z)]]

y €4 =
lw(@)]| el |

€1

where ||.|| is the Ly norm.



Numerical examples

We consider the following 2D elliptic equation:

0 £. 0
s (a(z>8:cz- uﬁ(x)) = filz),z €9, (7)

ue(x) = 0,z € 01, (8)

In our examples, 2 = [0, 1]? and the permeability
a(x/€) = 2 + sin(2mx1 /€) cos(2mxs/€) and € = l

eability field
00 ———
. " 5 .- " s
RN e
»
. " 5 »
& 14 140

Figure: Left: permeability of the 2D elliptic problem. Note that ¢ = 1/8. Right: the
reference solution.




Oversampling and cell problems
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Figure: 2D elliptic cell problem 1. Relative error as a function of the training epochs
for x1. Left: all training epochs; right: the last 4000 epochs. The average relative errors
of the last 300 epochs for the oversampling and without oversampling are 0.072034 and
0.326963 respectively.
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Figure: 2D elliptic cell problem 2. Relative error as a function of the training epochs
for x2. Left: all training epochs; right: the last 4000 epochs. The average relative errors

of the last 300 epochs for the oversampling and without oversampling are 0.071396 and
0.312961 respectivelv.



Convergence results
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Figure: 2D elliptic problem by the classical PINN. Relative error as a function of the
training epochs, the entire history (left), the last 1500 epochs (right).
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Figure: 2D elliptic cell problem e; and e3 relative errors (NH-PINN) with respective to
the training epochs. Left: history of all training epochs; right: history of the last 1200
epochs.




Analysis and transfer learning

Errors:

€1 €2 €3 €4
0.082994 0.0212534 0.076604 0.021316

Table: Relative errors for the 2D elliptic problem.

Transfer learning: We use the trained NH-PINN network to initialize the PINN.
The failure shows that the minimizers of two loss functions are not closed. Modify
the PINN loss function should be the future.

epachs

Figure: 2D elliptic transfer learning of classical PINN.



Conclusion

@ We find that PINN accuracy on solving multiscale problems degenerates. We
propose a 3-step approach, neural homogenization based PINN (NH-PINN).
We first apply PINN to solve the cell problems which are used to derive the
homogenized equation; the homogenized equation can then be easily solved

by PINN.

© We propose an oversampling strategy to solve the periodic PDE by PINN;
this method greatly improves the accuracy of the PINN when solving the high
dimensional periodic problems.

© We also observe that NH-PINN can improve the homogenization accuracy. If
we apply PINN to implement homogenization, the solution may be more
accurate than the traditional numerical methods. PINN may be a potential
alternative of implementing the homogenization.



Outline:

Incorporate Physics Knowledge and Al to design new interpretable
models

Incorporate Physics Knowledge into Al to predict multiscale problems:
NH-PINN

Interpretable Al enables data-driven scientific discovery with
uncertainty quantification capability — ALZHEIMER’s Disease
Prediction

Sparse Neural Architecture Design with quantified uncertainties

Scalable training large-scale Deep Neural Network



Interpretable Al:

Question: Can we use available observation data to
discover the physical laws?

Goal: Enable Data-driven Scientific Discovery?

S. Zhang, G. Lin, Robust data-driven discovery of governing physical laws with error bars, Proceedings of the Royal Society of London. Series
A, mathematical, physical and engineering sciences, in press, 2018.

Jiuhai Chen, Lulu Kang, Guang Lin, Gaussian process assisted active learning of physical laws,
Technometrics, in press, 2020.

https://doi.org/10.1080/00401706.2020.1817790

Sheng Zhang, Guang Lin, Robust subsampling-based threshold sparse Bayesian regression to tackle

high noise and outliers for data-driven discovery of differential equations, Journal of Computational
Physics, 428: 109962, 2021.
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ALZHEIMER'S DISEASE PREDICTION




AD prediction

PURDUE

UNIVERSITY

How to apply patient data (ADNI
dataset) to optimize ODEs?

‘ School of Mechanical Engineering

Max -TZ=
z .
: £
=) _/Dementia/
£ y ;
el . /4
= | High risk /
% | Detection // MCI ‘,./'II-““' risk
E | threshold /
& e /
l < Normal
Min —
Time >
——  Ap amyloid MRI + FDG PET
—— CSF tau —— Cognitive impairment
144 x Amyloid-beta data X
X Tau-phosphorylated data
1.2 - Neurodegeneration data
»  Cognitive decline data %
—=- Amyloid-beta model
L0q —-. Tau-phosphorylated model )&‘Wﬁ; 7
-=- Tau-nonamyloid model % %, N /!
0.8 - Neurodegeneration model 7 X;;' KBRS /
Cognitive-decline model ) )i’* % Ry oK £
0.6 1
0.4 1
0.2 1
0.0 1




Dataset

ABETA (pg/ml) TAU (pg/ml)
@-
g | A 8.
« =+
[=]
& g |
8
™ o
[
o o
'lE —
o 8.
=g =
3 - o -
1 L 1 1 1 1 1
N
8 4 o
S =~
g - 81
o
w0 84
8
=] Q -
g Q
€1 81
[} (=2
8 n o
o s |
N e
g
o o -
1 1 1 1 1 1 1 1 1 | 1 1 1 1
-0 -5 0 5 10 15 20 -10 -5 0 5 10 15 20
ADPS ADPS
E PURDUE ‘ School of Mechanical Engineering
UNIVERSITY

Jedynak, Bruno M., et al. "A computational neurodegenerative disease progression score: method and results with the Alzheimer's
disease neuroimaging initiative cohort." Neuroimage 63.3 (2012): 1478-1486.

Progression of ADNI biomarkers
as function of the Alzheimer's
Disease Progression Score (ADPS)

Normal-MNormal

o Disease progression score
== (DPS)

- Patients’ disease progression differs in
their age of onset and rate of progression.

« Each biomarker follows a sigmoid shaped
curve.
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Initialized ODE model
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Fit ODEs with the use of patient data

Results
dA . (t
;( )_ ~1.7112-(4,(1) + 0.005) - (4, (1) = 1) + 0.0045;
dr (t ﬁ
r;( ) =—0.0276- A, (1) +3.6918- 4;(1)—0.2498 7, (1)[7, () —1+14.2932- 4, (1)];
dz;fr) =—0.5106-7,(t)+1.0708- 7, (1) —1.0257 - N(1)[ N (1) =1+ 0.5533 -7, ()]
dC(t)

= -0.0017-N(#)+5.9-107 - N2(£) = 0.0372-C(H)[C(t) =2 - 0.0118- N (¢)]

dt



Results
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Sparse Neural Architecture Design with quantified uncertainties:

Question: Can we develop a fast, small & accurate deep neural
network with better interpretability and less demanding on the
computational resource?

Goal: Enable Fast Interpretable Nonlinear Data-driven Scientific
Discovery.

W. Deng, X. Zhang, F. Liang, G. Lin, An adaptive empirical Bayesian method for sparse
deep learning, 2019 Conference on Neural Information Processing Systems (NIPS),
Dec. 8 — Dec. 14, 2019, Vancouver, Canada.

NeurIPS'19, NeurIPS20, ICML'20, ICLR21, JCP"20, ]¢P'Zla, JCP'21b



Bayesian Sparse learning with preconditioned

stochastic gradient MCMC and its applications

Guang Lin?

Joint work with Yating Wang, Wei Deng, Xiao Zhang, Faming Liang

!Departments of Mathematics, Statistics & School of Mechanical Engineering

Purdue University

NeurIPS'19, JCP20
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Motivation and Objective

DNN challenges:

@ Over-parameterized DNN requires heavy memory and computation
power, and may cause overfitting

@ Cost function is difficult to optimize and a good local minima is hard
to obtain

Objective:
@ Sparse learning to enhance efficiency, robustness and interpretability
@ Bayesian approach to capture uncertainty
@ Compute posterior expectation to obtain more robust result

@ Escape "shallow” local optimas and saddle points to achieve better
point estimate



Notations

@ The entire data: D = {d;}Y,, a mini-batch of data BB
@ Model parameters: 3 € R

@ Log posterior density L(3) = log(p(3|D)) and true gradient
N
VsL(B) = Vglogp(B) + > Vglogp(d;|B)
i=1
@ Stochastic gradient using a mini-batch is Vi(ﬂ).

N ]\T n
VpL(B) = Vglogp(B) + — > Vgalogp(d;|B)
" e



Introduction

Key Components:

@ Sparse learning - Enhance efficiency, robustness and interpretability

e Bayesian approach - Capture uncertainty

@ Empirical Bayesian method - Learn a class of hierarchical Bayes
models, yield data-driven adaptive penalties

e Adaptive Stochastic Gradient Langevin Dynamics (SGLD) or
SG-MCMC - Capture parameter uncertainty and avoid overfitting,
escaping "shallow” local optima and saddle points, and compute
posterior expectation to obtain more robust result

@ Preconditioned SGLD (PSGLD) - Update parameters with
different step size, adaptive to local geometric and resulting in faster
convergence for components of 3 have different scales

@ Stochastic Approximation (SA) - Optimize latent variables in
prior (SGLD-SA, PSGLD-SA) to converge to the asymptotically
correct distribution with a controllable bias

@ Pruning Strategy - Enable Sparse Deep Neural Network; Sparsity is
ensured, resulting in less usage in memory and computational power



Introduction

SGD update the parameters using

Bit1 = Br + &V L(By)

@ Find MAP for model parameter through stochastic optimization

@ Do not capture parameter uncertainty and can potentially overfit
data.



Introduction

Langevin Dynamics and SGLD

@ A Langevin diffusion with stationary distribution p(/3) can be
described by the SDE

dB(t) = VL(B)dt + V2dW (t) (1)

where W (t) is a Brownian motion.

@ Euler discretization of (1), and approximate the true gradient by the
stochastic gradient:

ﬁﬁu‘-—i—l = [3;‘-_ + f;:V)@El(ﬁ;.-.) T AT(O QchT_II) (2)

(2) asymptotically converges to m(B|D) x e™X(B). As T increases, ¢
decreases, the solution tends to the global optima with a higher
probability.



Introduction

Advantages of SGLD

@ Sample DNN posterior to model uncertainty
@ Compute posterior expectation to obtain more robust result
@ Escape local optimas to achieve better point estimate

SGLD updates all parameters with the same step size, this may cause
slow mixing when components of 3 have different scales.



A New Class of Adaptive Stochastic Gradient MCMC

A class of Adaptive Stochastic Gradient MCMC

Stochastic gradient Langevin Dynamics (SGLD), the first order
SG-MCMC algorithm, is a sampling algorithm in DNN which
asymptotically converges to a stationary distribution of e™%(P):

B+ = gk 4 (518" + N (0,265 +71), (4)

For the adaptive SGLD, we introduce an auxiliary variable 6 and
formulate an inhomogeneous Markov Chain as follows:

B(A‘Jrl) _ IB(A‘) 4 G(k‘)vﬁi(lg(k‘)_g(k)) i ﬁ(k).
9(1\‘-}-1) - B(L) +w(k+l)H(9(k).,8(k+l)).

(5)

where 7'%) ~ N(0,2¢%) /7T), H(O,3) is a biased but aymptotically
unbiased estimator of the mean field function h(@). The interpretation
of this algorithm is that we sample B**1) from i(,@“"). 0*)) and
adaptively optimize 6 such that (@ — 8*,h(0)) = 0.



A MNew Class of Adaptive Stochastic Gradient MCMC

Pruning Strategy - Enable Sparse Deep Neural Network

Although the magnitude-based unit pruning shows more computational
savings, it doesn’'t demonstrate robustness under coarser pruning. We
instead apply the magnitude-based weight-pruning to our compression

experiments. The weight pruning can also be viewed as a greedy L
regularization in optimization.



A MNew Class of Adaptive Stochastic Gradient MCMC

Preconditioned SGLD (PSGLD)

@ Updating parameters with different step size, adaptive to local
geometric and resulting in faster convergence for components of 3
have different scales



Mumerical tests

Simulation of Large-p-Small-n Regression

Dataset: n = 100 and p = 1000. y = X3 + 1 where X ~ N,,(0, %),
ﬁ — (jl .-‘321 .335 0-. 0- seey O)Ir n -~ Mi-(O* 31’:1): j] ~ N’(Sa J?)!
By ~ N(2,02), B3 ~N(1,62), 0. =0.2.
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Mumerical tests

Residual Network Compression

Table 1: Resnet20 Compression on CIFAR10. L, =1 x 10~* means we apply
weight decay 1 x 10™* to the sparse layers with target sparse rate S.

PenaLty \ S 30%  50%  T0%  90%

Li=1x10"2 92,88 92.75 92.62 89.95
Li=1x10"2 89.50 89.79 90.07 89.83

Lo=1x10"% 94.17 93.82 93.17 90.11
Loy=1x10"" 94.02 93.96 93.50 91.20

SGHMC-SA 94.23 94.27 93.74 91.68

Most notably, 91.68% accuracy based on 27K parameters (90%
sparsity) in Resnet20 is the besting existing result. By contrast,
targeted dropout (2018) achieved 91.48% accuracy based on 47K
parameters (90% sparsity) of Resnet32, BC-GHS (2017) achieved 91.0%

accuracy based on 8M parameters (94.5% sparsity) of VGG models.




Numerical tests

Small n large p problem

Number of observations n = 100 , Number of predictors p = 200.
Predictors: X € N(0,%), X;,; = 0.6li—3l Xz, 1] #0.3.

Model parameters: 81 =3,8, =1,8; =0, for j=1,---,p.
Responses: y = X8 +¢, e ~ N, (0,31,,).

" |  PSGLD-SA « PSGLD
* PSGLD
- | * SGLD-SA ®
A
e
i »
a P @
o All |
0 1 2 3 4
p
(a) Posterior mean vs true (b) Posterior estimation of

,"31 ' 32



Numerical tests

e PSGLD-SA w© - ® PSGLD-SA |
g e PSGLD ' e PSGLD
SGLD-SA il | SGLD-SA
e 8, E o
A \_,
&-—‘*‘—— L i, —eamee
— — o - ——— }

B | T I I
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(c) Testing MSE error history (d) Testing MAE error history




Numerical tests

Multiscale flow problem

Flow equation:

klu+Vp=0 in D
div(u) = f in D
u-n=>0 on 0D

k: heterogeneous permeability field.
On fine grid 7}, using Mixed finite element method:

2 T o= | 9

Velocity approximation: RT (the lowest order Raviart-Thomas element) .
Pressure approximation: P, (piecewise constant element).
Difficulties: Ay (k) is large, and depends on k.




Mumerical tests

Network architecture

lb
IA !|

| Upsacaling

Convolution Reshape

) AN Drl ﬁ[:l \\‘3:\
Pooling A A\ j ITF‘ N Dense
: Downsacaling
Flanen —> Dense — r@—' Convolution —» Flatten —— Dense

Coarse grid solver

Figure 2: An illustration of the network architecture for flow approximation.




Numerical results

Mumerical tests

Dense (6,110,624 weight parameters)

PSGLD (e1/ 2 % )

SGLD(c1/ €2 % )

KLE32 0.75/0.57 2.37 [2.17
KLE64 0.82/0.63 2.38 /2.25
KLE128 2.13 /1.93 2.90 /2.60
PSGLD-SA (e1/ e2 % ) SGLD-SA (e1/ e2 % )
Sparse rate 50% (2,326,049 weight parameters)
KLE32 0.59/0.56 2.67 /2.35
KLE64 0.78 /0.58 2.68 /2.41
KLE128 1.60 /1.31 3.47 /3.00
Sparse rate 70% (758,738 weight parameters)
KLE32 0.58/ 0.51 2.28 /2.10
KLE64 0.76 /0.61 2.40 /2.97
KLE128 1.79 /1.60 3.51/3.02

Table 2: Errors between the true velocity and predicted velocity (from trained
neural networks) using SGLD, PSGLD, SGLD-SA, and proposed PSGLD-SA.

Mean errors of 300 testing cases.




Mumerical tests
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Numerical tests
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Figure 3: KLE 32. True and prediction solutions. = - = =




Numerical tests
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Numerical tests
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Summ ary

Summary

@ Propose a class of adaptive stochastic gradient MCMC framework
with wide applications and proved the convergence under mild
assumptions.

@ It can be applied to the empirical Bayesian method to learn a class
of hierarchical Bayes models, yielding data-driven adaptive penalties.

@ Propose an adaptive Bayesian sparse deep learning algorithm for
regression problems

@ Optimize SSGL priors through stochastic approximation. Sparsity is
ensured, resulting in less usage in memory and computational power

@ Sample with preconditioner SGLD, which is adaptive to local
geometric and results in faster convergence

@ Converge to the asymptotically correct distribution with a
controllable bias introduced by SA

@ It achieves the state-of-the-art compression performance on
Resnet20, which outperforms the existing methods by a large margin.




Visualization the Loss Landscape of Deep Neural Nets

The loss landscape of modern deep neural nets [Li et al., 2018]



Gradient Descent Fails

Credit to losslanscape.com
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Scalable training large-scale Deep Neural Network:

Question: How can we design efficient optimization/sampling
algorithms to train large-scale deep neural networks?

Goal: Enable Fast training large-scale DNN.

W. Deng, X. Zhang, F. Liang, G. Lin, An adaptive empirical Bayesian method for sparse
deep learning, 2019 Conference on Neural Information Processing Systems (NIPS),
Dec. 8 — Dec. 14, 2019, Vancouver, Canada.

NeurIPS§'19, NeurIPS$20, ICML"20, ICLR"21, JCP"20, ]¢P'21a, JCP'21b



Scalable algorithms for Bayesian deep learning via
Stochastic Gradient Monte Carlo and Beyond

Guang Lin*
Joint work with W. Deng, Y. Wang, Q. Feng, L. Gao, G. Karagiannis, F. Liang
August 13, 2021

!Departments of Mathematics & School of Mechanical Engineering, Purdue University

NeurIPS'19, NeurIPS20, ICML'20, ICLR'21, JCP'20, JCP"21a, JCP'21b



Markov chain Monte Carlo

Uncertainty quantification is crucial for Al safety problems and

reinforcement learning, which draws our attention to Markov chain
Monte Carlo (MCMC), which is known for

e Multi-modal sampling — Accurate predictive confidence interval

e Non-convex optimization — Better point estimate



Langevin diffusion

A famous sampling algorithm is called Langevin diffusion.

dB: = —VU(B:)dt + V2rdW,,

where 3; is the parameter at time t, U(-) is the energy function, W; is a

Brownian motion and 7 is the temperature.

, ; oo e o u(B)
As t — o0, (B¢ converges to the stationary Gibbs distribution Ce™ "

—1=0.2
— =1
—1=5

(a) Gibbs measures at three dif-
ferent temperatures 7.



Stochastic gradient Langevin dynamics

However, evaluating gradient in big data problems is too costly.

To tackle this issue, Max Welling, etc [Welling and Teh, 2011] proposed
the stochastic gradient Langevin dynamics algorithm (SGLD)

Bi+1 = Bk —nV a(/gk) + N (0, 2n7l). (1)

As t — oo and n — 0, 3; converges weakly to the stationary Gibbs
distribution Ce~+.




Stochastic gradient Langevin dynamics

Sample from a multi-modal distribution

SGLD

ter=150




Acceleration strategies for MCMC

Most popular strategies to accelerate MCMC:

e Simulated annealing [Kirkpatrick et al., 1983]
e Replica exchange MCMC [Swendsen and Wang, 1986]



Replica Exchange SGLD
Wei Deng, et al., ICML 2020



Replica exchange Langevin diffusion

Consider two Langevin diffusion processes with 71 > m

dgM = —vu(BM)dt + vV2rdw
dB® = —vu(BP)dt + 2rd W?

Moreover, the positions of the two particles swap with a probability

5(8Y, 82 .= e(FF—7%) (uB)-uE)

In other words, a jump process is included in a Markov process

P(Besar = (B, BM)18: = (B, 8Y)) = rs(BY, 31 dt
P(Berar = (B, B8 = (B, 8Y)) =1 - rS(BY, B dt



Exploitation

Exploitatid

Figure 1: Trajectory plot for replica exchange Langevin diffusion.



Why the naive numerical algorithm fails

Consider the scalable stochastic gradient Langevin dynamics algorithm

[Welling and Teh, 2011]

lBk+1 = (1) - '}kVL /Bk 5,V 2I]k7'1€k
33 — (2) — mVL(BP) + / 2memat®.

Swap the chains with a naive swapping rate rS(B’,((QI,BﬁBl)nk&
S(AY,, 30 ) = o(F-%) (UBR-LBL)) (2)

Exponentiating the unbiased estimators Z(Bf(}rl) leads to a large bias.

8In the implementations, we fix rn, = 1 by default.



A corrected algorithm

Assume L(8) ~ N(L(8),0?) and consider the geometric Brownian
motion of {S;}:c[0,1) in each swap as a Martingale

. = o(A—%) (HAV-EE™)-(%- %))

f —€ [ S
3
(B i) (4 5)resviom)

Taking the derivative of gt with respect to t and W;, [t6's lemma gives,

. dS: 1d%S, dS; I [
d6— | 22 dt dW, =v2 [ = — =) 65,dW..
t (dt +2th2) g We= V2| -~ — | o5dWh

By fixing t =1 in (3), we have the suggested unbiased swapping rate

§ — o(F-%)(LEN-UAN-(4—% )o’)



Replica exchange Stochastic gradient Langevin dynamics

SGLD Replica exchange SGLD

ter=150 ker=525

o q & I[-S;.rn.rin|:|5=15 @ g:p '

10



Acceleration via replica exchange

Wo(p, )

Figure 2: Acceleration via replica exchange (swaps/ interactions)
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Accelerating convergence via variance reduction

Can we do better?

14



Exponential acceleration via
variance reduction

Wei Deng et al., ICLR 2021



Accelerating convergence via variance reduction

The desire to obtain more effective swaps drives us to design more

efficient energy estimators.

To reduce the variance of the noisy energy estimator

L(B|,@(h)) — N D icB L(x;|ﬁ(h)) for h € {1,2}, we consider an unbiased

n

estimator L(B|B(h)) for Z:ﬁil L(X;|§(h)) and a constant ¢, we see that a
new estimator L(B|3"), which follows

L(B|3"M) = L(B|B") + c (L(BIE“”) -3 L(xfé‘“’))) . (4)

=1

is still the unbiased estimator for Zil L(x;|3™).

15



Accelerating convergence via variance reduction

By decomposing the variance, we have

Var(L(B|B™M)) = Var (L(Bhﬁ“‘))) + c2Var (L(B|§“ﬂ)) +2cCov (L(B\,@“‘)], L(B|§“‘>)) .

In such a case, Var(Z(B|@(h))) achieves the minimum variance

(1-— pz)Var(L(BW(h))) given c* ::-ccw(L‘E{i(ﬁ;(’;)'g((ﬁ)lf“’?))’ where Cov(-, )

denotes the covariance and p is the correlation coefficient.

16



Accelerating convergence via variance reduction

To make variance reduction work, it requires two crucial components.

e

e [o propose a correlated control variate 3
— Update B = 65:31” every m iterations
e [he optimal ¢ is unknown.
— Set ¢ = —1 for highly correlated energy estimators.

— Set adaptive c for the less correlated.

17



VR-reSGLD may lead to a more efficient energy estimator with a much
smaller variance.

Lemma (Variance-reduced energy estimator)

Under the smoothness and dissipativity assumptions, the variance of the

variance-reduced energy estimator Z(B|ﬁ(h)), where h € {1,2}, is upper
bounded by

Var (Z(Biﬁ(h)» < min {(’) <?> , Var(% Z L(Xilﬁ(l))) }

ieB

where the detailed O(-) constants is shown in the appendix

[Deng et al., 2021].

Reduction of Variance

18



A smaller variance implies more effective swaps

The variance-reduced energy estimator Z(B\,@(h)) doesn’t directly affect
]E[g.n‘m‘n] within the support [0, c0]. However, the unbounded support is
not appropriate for numerical algorithms, and only the truncated
swapping rate S, , , = min{l, §n.m1n} Is considered. As such, the

truncated swapping rate becomes significantly smaller.

Lemma (Variance reduction for larger swapping rates)

Given a large enough batch size n, the variance-reduced energy estimator

I( By | ﬁgh]) yields a truncated swapping rate that satisfies

E[Sy,mn] & min {1, 5(5(1):@2))(0(%) + e@(”'i”f?f)) b6

19



Acceleration via variance-reduced replica exchange

3 — SGLD
= —reSGLD
— VR-reSGLD

Acceleratio

Figure 3: Acceleration via variance-reduced replica exchange.
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1D simulation of Gaussian mixture
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Figure 2: Trace plots, KDEs of B(!), and sensitivity study of 52 with respect to m, 77 and n.
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Non-convex optimization on CIFAR10 and CIFAR100

H
o

— =2
~ m=50 & n=256 ‘ —m=50&n=256 3 00 —m=50 &n=256 2% — m=s0 &n=256
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v.s. proposed (m=50) v.s. proposed (m=50) setups on CIFAR10 setups on CIFAR100

Figure 3: Variance reduction on the noisy energy estimators on CIFAR10 & CIFAR100 datasets.
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TABLE 1: PREDICTION ACCURACIES (%) BASED ON BAYESIAN MODEL AVERAGING.
METHOD CIFARI10 CIFAR100
RESNET20 RESNET32 RESNETS6 RESNET20 RESNET32 RESNETS6
M-SGD 94.074+0.11 95.11+£0.07 96.05+0.21 | 71.934+0.13 74.65+0.20 78.76+40.24
SGHMC 04.164+0.13 95.17+0.08 96.04+0.18 | 72.09+0.14 74.80+0.19 78.95+0.22
reSGHMC 94.564+0.23 95.44+0.16 96.15+0.17 | 73.94+0.34 76.38+0.23 79.86+40.26
VR-reSGHMC | 94.8410.11 95.62+0.09 96.32+0.15 | 74.83+0.18 77.40+0.27 80.62+0.22
cyeSGHMC 94.614+0.15 95.56+0.12 96.19+0.17 74.21+0.22  76.60+0.25 80.39+0.21
cVR-reSGHMC | 94.91+0.10 95.64+0.13 96.36+0.16 | 75.02+0.19 77.58+0.21 80.50+0.25
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Figure 5: A study of variance reduction techniques using adaptive coefficient and non-adaptive
coefficient on CIFAR10 & CIFAR100 datasets.



e Replica exchange stochastic gradient MCMC shows a potential in

exponentially accelerating the convergence in non-convex learning.

[Deng et al., 2020]

e Variance reduction of energy estimators yields exponential more
effective swaps, which further accelerates the exponential

convergence in non-convex learning. [Deng et al., 2021]

e This is the first work to do variance reduction on energy estimators
in deep learning, which paves the road for accelerating advanced

stochastic gradient MCMC algorithms in non-convex learning.
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“..Because I had worked in the closest possible ways with
physicists and engineers, I knew that our data can never be precise...”
Norbert Wiener
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