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Artificial Intelligence: Image Coloring

Credit to ColdFusion



Artificial Intelligence: AlphaGo

Credit to DeepMind

Reinforcement Learning in AlphaGo



Artificial Intelligence: Autonomous Driving

Credit to Ramin Hasani, MIT.
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Outline:

❖ Incorporate Physics Knowledge and AI to design new 
interpretable models

❖ Incorporate Physics Knowledge into AI to predict multiscale problems: 
NH-PINN

❖ Interpretable AI enables data-driven scientific discovery with 
uncertainty quantification capability – ALZHEIMER’s Disease 
Prediction

❖ Sparse Neural Architecture Design with quantified uncertainties

❖ Scalable training large-scale Deep Neural Network 



How to incorporate Physics Knowledge and AI to 
design new interpretable models? - Interpretable 
AI for Science

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and predictability of integer-

and fractional-order epidemiological models using physics-informed neural networks, Nature Computational 
Science, 1, 744-753, 2021

2. Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for building trustworthy 

data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLoS

Computional Biology 17(9): e1009334. https://doi.org/10.1371/journal.pcbi.1009334



Predicting the COVID-19 pandemic 
with uncertainties using trustworthy 
data-driven epidemiological models

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and predictability of integer-

and fractional-order epidemiological models using physics-informed neural networks, Nature Computational 
Science, 1, 744-753, 2021

2. Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for building trustworthy 

data-driven epidemiological models: Application to the COVID-19 outbreak in New York City, PLoS

Computional Biology 17(9): e1009334. https://doi.org/10.1371/journal.pcbi.1009334



A general framework for building a trustworthy data-driven epidemiological model

Sheng Zhang, Joan Ponce, Zhen Zhang, Guang Lin, George Karniadakis, An integrated framework for 

building trustworthy data-driven epidemiological models: Application to the COVID-19 outbreak 

in New York City, PLoS Computional Biology 17(9): e1009334. 

https://doi.org/10.1371/journal.pcbi.1009334



New York City COVID-19 related Event Timeline 

Calibrate piecewise-constant model parameters to capture local epidemiological dynamics



New York City COVID-19 related Event Timeline 

Calibrate piecewise-constant model parameters to capture local epidemiological dynamics



Epidemiological Model Development

Fixed 

parameters:

eps = 0.75

delta = 0.6

d_E = 1/2.9

d_P = 1/2.3

d_I = 1/2.9

d_A = 1/7

d_H = 1/6.9

d_Q = 1/10

β: Transmission rate

p: Hospitalization rate

q: Death from hospital rate



Calibrated COVID-19 Transmission Rate for New York City

Calibrate piecewise-constant model parameters to capture local epidemiological dynamics



Forecasting with Uncertainties and Scenarios



Physics Informed Neural Networks (PINNs)

A (non-local) differential operator with parameters 𝝀

(Fractional) Model:

ℒ𝝀𝑢 = 𝑓

Solution/DataPhysics

𝑢∗,𝑓∗

Forward

Inverse

● ℒ𝝀

A flexible computational tool to study model uncertainty

Incorporate data and different models

Accurate fitting to data

Inferring model parameters and discovering unobserved dynamics

1. Ehsan Kharazmi, Min Cai, Xiaoning Zheng, Guang Lin, George Em Karniadakis, Identifiability and 

predictability of integer- and fractional-order epidemiological models using physics-
informed neural networks, Nature Computational Science, 1, 744-753, 2021



Different Epidemiological Models

Integer-Order Models (simple to complex models)

𝕀𝟏 𝕀𝟐 𝕀𝟑model model model

𝔽𝟏 𝔽𝟐 𝔻𝟏model model model

Fractional-Order and Time-Delay Models (add memory effects)



PINNs for (Fractional) Epidemiological Models
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Fitting the data accurately Discovering unobserved dynamics

PINN Results: Model Uncertainty based on NYC dataset

Inferring model parameters



Fractional Order Models Introduce Memory in the Dynamics

Memory: The derivative at time 𝑡 depends on the weighted 

values of the function       from initial point 𝒕 = 𝟎 up to 

current time 𝒕.  

Caputo fractional derivative of order 𝜅 ∈ (0,1): a convolution type integro-differential operator

𝑡 = 0
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• Fractional order 𝜅 is the notion of memory effect 

• Smaller 𝜅 can induce a delay in the dynamics 

• 𝜅 = 𝜅(𝑡) can be time varying

Different Compartments May Have Different Memory Effects!
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Fractional Order SIR     V.S.      Integer Order SIR

S I R
𝛽𝐼/𝑁 𝛾

𝜅1 = 0.89 𝜅2 = 0.99 𝜅3 = 0.87

𝜅<1 cause a delay almost integer,

no delay 

𝜅<1 cause a delay 

𝔽𝟏model



Summary

This is the first work to employ structural and practical identifiability tools to 

study COVID-19 model identifiability based on the available data.

A general data-driven epidemiological modeling framework is developed, which 

seamlessly integrates model identifiability, model sensitivity analysis, model 

calibration, model prediction with confidence intervals, and evaluating control 

strategies under uncertainties.

We treat beta (transmission rate), p (proportion of isolated individuals), and q 

(proportion of disease-related deaths) as time-dependent piece-wise model 

parameters and calibrate them using the available New York City COVID-19 

dataset.

The developed COVID-19 model is employed to evaluate the effects of 

vaccination deployment scenarios.

We developed a flexible computational framework using physics-informed 

neural networks (PINNs) to study model uncertainty and discover time-

dependent parameters. 
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Wing Tat Leung, Guang Lin, Zecheng Zhang, NH-PINN: Neural homogenization 

based Physics-informed Neural Network for Multiscale Problems, 2022, 

https://arxiv.org/abs/2108.12942
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Interpretable AI:

Jiuhai Chen, Lulu Kang, Guang Lin, Gaussian process assisted active learning of physical laws, 

Technometrics, in press, 2020. 

https://doi.org/10.1080/00401706.2020.1817790

Sheng Zhang, Guang Lin, Robust subsampling-based threshold sparse Bayesian regression to tackle 

high noise and outliers for data-driven discovery of differential equations, Journal of Computational 

Physics, 428: 109962, 2021. 

https://doi.org/10.1080/00401706.2020.1817790


Haoyang Zheng, Jeffrey Petrella, P.Murali Doraiswamy, Guang Lin, Wenrui 

Hao, Nature Medicine, in review, 2022
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Sparse Neural Architecture Design with quantified uncertainties:

Question: Can we develop a fast, small & accurate deep neural 

network with better interpretability and less demanding on the 

computational resource?

Goal: Enable Fast Interpretable Nonlinear Data-driven Scientific 

Discovery.  

W. Deng, X. Zhang, F. Liang, G. Lin, An adaptive empirical Bayesian method for sparse 

deep learning, 2019 Conference on Neural Information Processing Systems (NIPS), 

Dec. 8 – Dec. 14, 2019, Vancouver, Canada. 

















































Visualization the Loss Landscape of Deep Neural Nets

The loss landscape of modern deep neural nets [Li et al., 2018]



Gradient Descent Fails

Credit to losslanscape.com

Reinforcement Learning in AlphaGo
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Scalable training large-scale Deep Neural Network:

Question: How can we design efficient optimization/sampling 

algorithms to train large-scale deep neural networks?

Goal: Enable Fast training large-scale DNN.

W. Deng, X. Zhang, F. Liang, G. Lin, An adaptive empirical Bayesian method for sparse 

deep learning, 2019 Conference on Neural Information Processing Systems (NIPS), 

Dec. 8 – Dec. 14, 2019, Vancouver, Canada. 
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“…Because I had worked in the closest possible ways with

physicists and engineers, I knew that our data can never be precise…”

Norbert Wiener

Towards Third Wave AI: Interpretable, Robust 
Trustworthy Machine Learning for Diverse 
Applications in Science and Engineering


