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Today’s Talk

* New developments of ADMM-based interior point (ABIP) Method
* Optimal Diagonal Preconditioner and HDSDP
* A Dimension Reduced Second-Order Method

* SOLNP: a Derivative-Free Optimization Solver



Introduction to ADMM

Consider the following convex optimization problem

min f(x)
S.t. Ax=D>b
X € X
Where f Is a convex function, and X the Cartesian product of possibly non-

convex, real, closed, nonempty sets.

The corresponding augmented Lagrangian function IS
L(x, Dxex = f(x) —2"(Ax—b) + % ||Ax - b||5
where A Is the Lagrangian multipliers or dual variables, and p > 0 Is the
step size.



Two-block ADMM with separable objectives

Consider the following optimization problem

min  f(x) + g(s)
st. Ax+Bs=D>b
X €E X, SES

The corresponding augmented Lagrangian function Is
L(x, s, Dyex ses = f(x)+g(s)— 2" (Ax+ Bs — b) + §\|Ax + Bs — b||5

X1 = arg min,_ Lg(x, s*; A¥)
ADMM = {s**1 = argming_, Lg(x*T1, kT AK)

AH—H _ /lk —ﬂ(A[X; 8]k—|—1 o b)

The two-block ADMM with separable objective Is guarantee to converge.



Multi-Block Cyclic ADMM algorithm

We could also consider multiple blocks. Let x = [x4, x5, ..., x| If they have
separable objectives

Direct extension of multi-block (cyclic) ADMM updates as follows

k41 - k. 9k
X: = arg min, x Ls(X1, ..., X5; A%)

ADMM = {x, " = argmin, .y Lg(X{ ', ..., Xp; A¥)

AT = 2% - B(AX*T - b)



Direct extension of three-block ADMM does not converge
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Figure 1: Non-singular system of square equations, three blocks (Chen et al. 2016)



Randomly Permuted - ADMM (RP - ADMM) (Sun et al. 2016,
Chen et al. 2019)

In each cycle of ADMM

Randomly generate a permutation of 1,...,0; and following the
permutation order to update x; sequentially.

Update the multipliers the same way.

RP - ADMM Is guaranteed to converge In expectation.

Other methods need additional cost to overcome the divergence!



Performance on the diverging example
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ADMM Based Interior-Point (ABIP) Method (Lin et al 2021, Deng et al. 2022)

* Different strategies/parameters may be significantly different among problems being solved

* An Integration strategy based on decision tree Is integrated into ABIP

Dimension
_ - Sparsity / Strategy 1 (restart)
min  C X oy <= 0718 <= 1ze :
CO nstral nt vsflge:gslzz?;] VZ?{%:%Z[SAE,IQS‘;] Strategy 2 (Scal I n g)
s.t. Ax=0>b /\ J
x > 0 Coefficient
Null Objective / \ / \ / \ Strategy k (i reduction)

value = [10, 1] value = [3, 6] value = [16, 7] value = [0, 2] value = [14, 39] value = [11, 5]
class =0 class =1 class =0 class =1 class =1 class =0

* A simple feature-to-strategy mapping is derived from a machine learning model

* For generalization limit the number of strategies (2 or 3 types)



ABIP — Restart Strategy |

* ABIP tends to induce a spiral trajectory
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Instance SC50B (only plot the first two dimension,)



ABIP — Restart Strategy Il

* After restart, ABIP moves more aggressively and converges faster (reduce almost /0% ADMM
iterations) !

0.206805
0.20680165 |
locally magnify ABIP trajectory,
| after 500 ADMM iterations
' 0.20680155
\ D.221537195
B

0.206795 |- \\ point after 500 ADMM iterations (ABIP + Restart)

N\

global convergence poin ‘

0.206785 [
0.206775

0.22153 0.22155 0.22157 0.22159

Instance SC50B (only plot the first two dimension, after restart)



ABIP — Netlib

* Selected 105 Netlib iInstances

e ¢ =107, use the direct method, 10°® max ADMM iterations

Method + Solved # IPM # ADMM Avg.Time (s)
ABIP 65 74 265418 87.07
-+ restart 08 74 88257 23.63
+ rescale 84 72 (7925 20.44
+ hybrid u (=ABIP+) 86 22 73738 14.97

* Hybrid u : If u > € use the aggressive strategy, otherwise use another strategy

* ABIP+ decreases both # IPM Iiterations and # ADMM iterations significantly



ABIP — MIP2017

e 240 MIP2017 instances

e ¢ = 107*, presolved by PaPILO, use the direct method, 10®* max ADMM iterations

Method # Solved  SGM
COPT 240 1
PDLP (Julia) 202 17.4
ABIP 192 34.8
ABIP3+ Integration 212 16.7

* PDLP (Lu et al. 2021) is a practical first-order method (i.e., the primal-dual hybrid gradient
(PDHG) method) for linear programming, and it enhences PDHG by a few implementation

tricks.

* SGM stands for Shifted Geometric Mean, a standard measurement of solvers’ performance



ABIP — PageRank

* 117 Instances, generated from sparse matrix datasets: DIMACS10, Gleich, Newman and SNAP.
Second order methods in commercial solver fail iIn most of these instances.

® ¢ = 10~%, use the indirect method, 5000 max ADMM iterations.

Method # Solved SGM

PDLP (Julia) 122 1

ABIP3+ 119 1.31

* Examples:

Instance #nodes PDLP (Julia) ABIP3+
amazon0601 403394 117.54 71.15
coAuthorsDBLP 299067 51.66 24.70
web-BerkStan 685230 447 .68 139.75

web-Google 916428 293.01 148.18




ABIP — PageRank

* Generated by Google code

* When # nodes equals to # edges, the generated Iinstance Is a staircase matrix. For example,

-1.0000 0.1980 %) %) %) %) %) Q Q %)
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Staircase matrix instance (# nodes = 10)

* |n this case, ABIP+ Is significantly faster than PDLP!

## nodes PDLP (Julia) ABIP+

104 8.60 0.93
10° 135.67 10.36
10° 29248.40) 60.32




ABIP — Extension to Conice Linear Program

ABIP iteration remains valid for general conic linear program min CT&g

s.t. Ax =0
re K

e ABIP-subproblem requires to solve a proximal mapping x* = argmin AF (x) + %llx — c||* with respect to the log-barrier
functions F(x) in B(u, v, u®)

Positive orthant Second-order cone Positive semidefinite cone
o F(x) = —log(x) o F(x) = —log(t? — [|x]I?), x = (¢t; x) ® F(x) = —log(detx) »
e x = argmin AF (x) + %Ix —c|? e Can be solved by finding the root of e Equivalent to solve —Ax™" —c +x =0
Ny, quadratic functions e Can be solved by eigen decomposition
- 2

e The total IPM and ADMM iteration complexities of ABIP for conic linear program are respectively:

Tipy = 0 (108 G)) , Tapmm = 06 log G))



ABIP — Customization for ML

ABIP solves linear system:

Im A ﬂl o W1
A —I,) \u) \ o

e If A IS a general sparse matrix, we prefer augmented
system, which Is solved by sparse LDL decomposition

elimination

E—

(Im+AAT
AT

—Iﬂ) (El) B

e If A is dense or it has highly different row and col
dimensionalities, we prefer normal equation

For many QP problems in machine learning, we provide customized linear system solver by applying
Sherman-Morrison-Woodbury formula and simplifying the normal equation

LASSO

e Data matrix A of LASSO has n features, m samples

e The dimension of factorized matrix reduced from
2m + 2n + 3 to min{m, n}

SVM
e Data matrix A of SVM has n features, m samples

e The dimension of factorized matrix reduced from
Sm+4n+5ton+1




ABIP — SVM

* For 6 large instances from LIBSVM, e = 1072, time limit = 2000s

ABIP OSQP RACQP 5SCS5 GUROBI

solved 6 3 6 4 5
1st 1 2 2 0 1
2nd 2 1 2 1 0
3rd 3 0 0 1 1
4th 0 0 2 1 1
bth 0 0 0 1 2



Summary

ABIP Is

* ageneral purpose LP solver

* using ADMM to solve the subproblem

* developed with heuristics and intuitions from various strategies
°* equipped with several new computational tricks

* Smart dual updates?
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* New developments of ADMM-based interior point (ABIP) Method
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* SOLNP: a Derivative-Free Optimization Solver



HDSDP: Homogeneous Dual-Scaling SDP solver

min <C,X> AX —br = 0

X —A*'y+C7r—8S =0

subject to AX =0 bTy—(C,X)—k = 0
XES”JF X, S>>0, P s 1




Interior point method for SDPs

SDP iIs solvable in polynomial time using the interior point methods

* Take Newton step towards the perturbed KKT system

AX = b AX = b I o
Y — (@ A*'v+S = C A*Ay +AS = —Rp
Sl . Hp(XAS +AXS) = —R,

* Efficient numerical solvers have been developed

COPT, Mosek, SDPT3, SDPA, DSDP...

* Most IPM solvers adopt primal-dual path-following IPMs except DSDP

DSDP (Dual-scaling SDP) implements a dual potential reduction method



Homogeneous dual-scaling algorithm

From arbitrary starting dual solution (y,S > 0,7 > 0) with dual

residual R
AX —br = 0 AX+AX)—=b(r+AT) = 0
~A*y+Cr—S =0 ~A*(y+Ay)+ C(t+AT)—(S+AS) = 0
b'ly—(C,X})—k = 0 §5 Bss G0 X - gs X
X=pS1 k= pur L ut AT+ Ak = purl—k

uM b iAS (5 (Ay) - bt - ASs. - A5 kS5
b+ pAS—ICS—t —u((C,571CS™H+779) Ay b'y — pr—1 8 (@ S 3 c 5 RS

* Primal iterations can still be fully eliminated

e S—_A*y+ Cr — R inherits sparsity pattern of data New strategies are tailored

Less memory and since X is generally dense for the method

* |nfeasibility or an early feasible solution can be detected via the
embedding




Computational aspects for HDSDP Solver

To enhance performance, HDSDP (written in ANSI C) Is equipped with

* Pre-solving that detects special structure and
dependency

Automatic switch to Dual-scaling

* Line-searches over barrier to balance optimality &

central Ity Schur tricks Barrier i update
* Heuristics to update the barrier parameter u Corrector DSDP Conjugate
gradient
* Corrector strategy to reuse the Schur matrix
Line-search Pre-solving
* A complete dual-scaling algorithm from DSDP5.8
Golden heuiristic Early solution detect

* More delicate strategies for the Schur system



Computational results

HDSDP Is tuned and tested for many benchmark datasets

Good performance on problems with both low-rank structure and sparsity

Solve around 70/75 Mittelmann’s benchmark problems

Solve 90/92 SDPLIB problems

Instance | DSDP5.8 | HDSDP | Mosek v9 | SDPT3 | COPT v5
G40_mb 18 I 174 25 18
G48_mb 36 3 191 49 35
G48mc 11 2 71 24 18
G55mc 200 179 679 191 301
G59mc 347 246 646 256 442
G60_mb 700 213 7979 592 714
G60mc 712 217 3005 590 713

Instance DSDP5.8 | HDSDP | Mosek v9O | SDPT3 | COPT v5

checkerl.5 87 41 72 71 81
foot 28 14 533 92 234
hand 4 2 76 3 40

ice_2.0 833 369 4584 484 1044
p_auss?2 832 419 5943 640 721
r1_2000 17 8 333 20 187
torusg3-15 101 22 219 61 84

(Results run on an intel i11700K machine)

Selected Mittelmann’s benchmark problems where HDSDP is fastest (all the constraints are rank-one)




Optimal Diagonal Pre-Conditioner [QGHYZ20]
Given matrix M = X "X > 0, iterative method (e.g., CG) is often applied to solve
Mx = b

* Convergence of iterative methods depends on the condition number k(M)
* Good performance needs pre-conditioning and we solve P=1/2pp=1/2x" = p
A good pre-conditioner reduces K(P_l/zMP_l/z)

* Diagonal P = D is called diagonal pre-conditioner

More generally, we wish to find D (or E ) such that k(D - X - E') is minimized ?

s it possible to find optimal D™ and E™ ? SDP works!



Application: Optimal Diagonal Pre-Conditioner

_ min K
_ (DMD) rET)nn K D .k
min K K :
- ’ subjectto D<M
il subject to | < DMD < ! : b

» min K » KD = M

_min k(X 'DX) D=0 max T
D diagonal,D =0 subject to kX DX > I 7,00
| -~ XTDX subject to X DX =1
| = XTDX

* Finding the optimal diagonal pre-conditioner is an SDP

* Two SDP blocks and sparse coefficient matrices
* Trivial dual interior-feasible solution What about two-sided ?

* An ideal formulation for dual SDP methods D = ZdieieiT



Two-Sided Pre-Conditioner

min H:( D1XD2)
D17~0,D>>0

* Common In practice and popular heuristics exist
e.g. Ruiz-scaling, matrix equilibration & balancing

* Not directly solvable using SDP

* Can be solved by iteratively fixing D, (D,) and optimizing the other side
Solving a sequence of SDPs

* Answer a question: how far can diagonal pre-conditioners go



Computational Results: Solving for the Optimal Pre-Conditioner

min K max 0
D,k d,d
subjectto D<M subjectto D — M <0
kD = M oM —D <0
SDP from optimal drag pre-conditioning problem HDSDP
* Perfectly in the dual form * A dual SDP algorithm (successor of DSDP5.8 by Benson)
* Trivial dual feasible interior point solution * Support initial dual solution
* 1 is an upper-bound for the optimal objective value * Customization for the diagonal pre-conditioner

n | Sparsity | HDSDP (start from (—10°,0)) | COPT | Mosek | SDPT3

500 | 0.05 ol 6.8 0.1 13.0
1000 | 0.09 445 53.9 | 54.2 | 327.0
2000 | 0.002 34.3 307.1 | 374.7 | 572.3

5000 | 0.0002 64.3 >1200 | >1200 | >1200




Computational Results: Optimal Diagonal Pre-Conditioner

* Test over 491 Suite Sparse Matrices of fewer than 1000 columns

Reduction | Number Average reduction |49.7%
>80% 121 :
Better than diagonal | 36.0%
>50% 190 A o 199
>20% 561 verage time .
* LIBSVM datasets
Mat Size Cbef Calft Reduce
YearPredictionMSD 90 5233000.00 470.20 0.999910
YearPredictionMSD.t 90 5521000.00 359900.00  0.934816
abalone_scale.txt 8 2419.00 2038.00 0.157291
bodyfat_scale.txt 14 1281.00 669.10 0.477475
cadata.txt 8 8982000.00 7632.00 0.999150
cpusmall_scale.txt 12 20000.00 6325.00 0.683813
eunite2001.t 16  52450000.00 8530.00 0.999837
eunite2001.txt 16  67300000.00 3591.00 0.999947
housing_scale.txt 13 153.90 83.22 0.459371
mg _scale.txt 6 10.67 10.03 0.059988
mpg_scale.txt 7 142.50 107.20 0.247842
pyrim_scale.txt 27  49100000.00 3307.00 0.999933
space_ga_scale.txt 6 1061.00 729.60 0.312041
triazines_scale.txt 60  24580000.00 15460000.00 0.371034

Right
0.29 +
0 I e o — — i . 2.
0 1 2 3 4 5 6
Left
oy .
-FE 045 B ~
-
g 0.22
d‘f 0 1 I ., 1 [ 1 LI I T E————
0 1 2 3 4 5 6
Two-sided
0.11
0 J ] s I
0 0.5 1 1.5 2 2.5 3 3.5 4

log(cond before / cond after)

Distribution of condition number reduction
0.5 means 70% reduction Iin condition number
1 means 90% and 2 means 99% reduction
In condition number



Summary

HDSDP Is

* ageneral purpose SDP solver

* using dual-scaling and simplified HSD

* developed with heuristics and intuitions from DSDP
°* equipped with several new computational tricks

* more Iterative methods for solving subproblems?



Today’s Talk

* New developments of ADMM-based interior point (ABIP) Method
* Optimal Diagonal Preconditioner and HDSDP
* A Dimension Reduced Second-Order Method

* SOLNP: a Derivative-Free Optimization Solver



Early Complexity Analyses for Nonconvex Optimization

min f(x),x € X in R",
* where f Is nonconvex and twice-differentiable,
gr = Vf(xx), He = V2 f (x)
* Goal: find x; such that:
| V(x,) IS € (primary, first-order condition)
Amin(Hy) = —+/€ (In active subspace, secondary, second-order condition)
* For the ball-constrained nonconvex QP: min c’x + 0.5xTQx s.t. [l x || , <1
O(loglog(e)); see Y (1989,93), Vavasis&Zippel (1990)
* For nonconvex QP with polyhedral constraints: O(e!); see Y (1998), Vavasis

(2001)



Standard methods for general nonconvex optimization |

First-order Method (FOM): Gradient-Type Methods

* Assume f has L-Lipschitz cont. gradient

* Global convergence by, e.g., linear-search (LS)

* No guarantee for the second-order condition

* Worst-case complexity, 0(e~2); see the textbook by Nesterov (2004)

Each iteration requires O(n¢) operations



Standard methods for general nonconvex optimization |
Second-order Method (SOM): Hesslan-Type Methods
* Assume f has M-Lipschitz cont. Hessian

* Global convergence by, e.qg., linear-search (LS), Trust-region (TR), or

Cubic Regularization

* Convergence to second-order points

* No better than 0(e~4), for traditional methods (steepest descent and
Newton); according to Cartis et al. (2010) .

Each iteration requires O(n3) operations



Analyses of SOM for general nonconvex optimization since 2000

Variants of SOM

* Trust-region with the fixed-radius strategy, 0(e~3/2), see the lecture notes

by Y since 2005

* Cubic regularization, 0(e~3/%), see Nesterov and Polyak (2006), Cartis,

Gould, and Toint (2011)

* A new trust-region framework, 0(e~3/2), Curtis, Robinson, and Samadi

(2017)

With “slight” modification, complexity of SOM reduces from 0(e~?) to 0(e~3/%)



Motivation from multi-directional FOM

* Two-directional FOM, with d; being the momentum direction (x;, — xy_1)
Xpe1= Xk — AV (xp) + ajgdye = X+ djyq
where step-sizes are constructed; including CG, PT, AGD, Polyak, ADAM and many others.
* In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to obtain

direction vector d,.. . For example, one TR step solves for d; ., from
min, (g,)'d + 0.5dTH,d s.t.||d||, < Ag

where A, Is the trust-region radius.
« DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions in SOM



DRSOM |

* The DRSOM In general uses m-independent directions
d(a):=D,a,D, e R"™ geR™
* Plug the expression into the full-dimension TR guadratic minimization problem,

we minimize a m-dimension trust-region subproblem to decide "m stepsizes”

min m§ (o) = (¢) a + %aTQka

allg, = Ag
Gk: DZDk) Qk — DZHka: Ck — (gk)TDk

How to choose D,? How great would m be? Rank of H,?
(Randomized) rank reduction of a symmetric matrix to log(n) (So et al. 08)?



DRSOM I

* |n following, as an example, DRSOM adopts two FOM directions
d=—a'Vf(x,)+ a*d, = d(a)
where gy, = Vf(xy), He = V2f(x%), dy = x — x4
* Then we minimize a 2-D trust-region problem to decide “two step-sizes”:

min m§ (&) = f(x;) + (c)" a + %aTQka

o], < A
| 9k9x  —9rdk | 9kHr9r  —9iHidi R
Gk — T T )Qk — T T y Ok = Td
—grdr  dpdg —9grHedy  djHpdyg Ji Qg



DRSOM I

DRSOM can be seen as:
* "Adaptive” Accelerated Gradient Method (Polyak’'s momentum 60)

* A second-order method minimizing guadratic model in the reduced 2-D

my(d) = f () + V() d +dTV2f (x)d, d € span{—gy, di}
compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method
d € span{gx, [H(x:)] 1g.} (e.g., Powell 70)
* A conjugate direction method for convex optimization exploring the Krylov
Subspace (e.g., Yuan&Stoer 95)

* For convex guadratic programming with no radius limit, terminates in n steps



Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

| 9xHr9x _gngdk] B —Hngzl
Qk - )Ck T

—giHkdx  diHydy i dx
How to cheaply obtain Q? Compute H, g, H,d; first.
* Finite difference:
1
He v~ [g(xe +€-v) — gil
* Analytic approach to fit modern automatic differentiation,

1
Higk =V g i), Hiedr = V(digr),

* or use Hessian if readily available !



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE)

Assumption. (a) f has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixed-

radius strategy: A, = €/B) c) If the Lagrangian multiplier 4; < +/€, assume
I (H, — H)dp.q1 II< C |l disq I* (Cartis et al.), where Hy is the projected Hessian in the

subspace (commonly adopted for approximate Hessian)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n
steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition,

DRSOM terminates in 0(e~3/2) iterations. Furthermore, the iterate x, satisfies the first-
order condition, and the Hessian Is positive semi-definite in the subspace spanned by the

gradient and momentum.

Theorem 3. (Local convergence rate) If the iterate x; converges to a strict local optimum

x* such that H(x™) > 0, and if Assumption (c) Is satisfled as soonas A, < Cy |l dg+1 |,
then DRSOM has a local superlinear (quadratic) speed of convergence, namely: || x4

—x* I= 0(ll x;, — x* 11%)



DRSOM: How to remove Assumption (c)?

* Global rate: ensure Assumption (c) holds periodically (whenever needed, e.qg., switch to
Krylov)
» Local rate: ensure Assumption (c) holds around x* ,we have the desired results.

Specifically, expand subspace iIf Assumption (c) does not hold...
» Carmon et al. (2018) find the NC (0 (e~ /%) for each step) and proceed
» Run Lanczos (worst-case without sparsity 0(n>) )

- Trade-off between 0(e~7/%) (more dimension-free) and 0(e~3/2)



DRSOM: convergence behavior, an example

102 u

1074}

CUTEst model name := CHAINWOO-1000

2. Locally superlinear *’

convergence

-.._i______-_-.)

1. 2-D DRSOM improved
by periodic Krylov

periodic-Krylov 2-Dimensional

20.000000

93.321928 26.643856  7.643856 98.965784  99.965784

Iteration

213.287712

— DRSOM-F (periodic-Krylov)

GD-+Wolfe
LBFGS+Wolfe
DRSOM-F(2-D)

Example from the
CUTESst dataset

e GD and LBFGS both
use a Line-search

(Hager-Zhang)
* DRSOM-F (2-D):
original 2-dimensional

version with g; and
dy

» DRSOM-F (periodic-
Krylov), guarantees

(Hx — Hi)dye1 IS C
d, .1 II* periodically.



Sensor Network Location (SNL)

* Consider Sensor Network Location (SNL)
No = {(i,5) : |z — 2l = dij < ra}, Na = {(i, k) : [|zi — ax]| = dix < ra}

where rq Is a fixed parameter known as the radio range. The SNL problem considers
the following QCQP feasibility problem,

2
|zi — 2 = di;,V(i,§) € No

|lzi — ax||* = d2,,¥(i, k) € N,

* We can solve SNL by the nonconvex nonlinear least square (NLS) problem

: 2 2 \2 2
m)%n Z (Ha’:@ —-fl’f'jH _dij) T Z (Hak _xjH _&%ﬁj)Z'
(@(j,j)eNﬂ: (k::j)eNa



Sensor Network Location (SNL)

* Graphical results using SDP relaxation to initialize the NLS
* n=80, m=>5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

* Both Gradient Descent and DRSOM can find good solutions !
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Sensor Network Location (SNL)

* Graphical results without SDP relaxation

* DRSOM can still converge to optimal solutions
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Neural Networks and Deep Learning

To use DRSOM In machine learning problems

* We apply the mini-batch strategy to a vanilla DRSOM
* Use Automatic Differentiation to compute gradients

* Train ResNetl8 Model with CIFAR 10

* Set Adam with initial learning rate le-3
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Neural Networks and Deep Learning

loss

0 _ W — ! _ W —— Pros
- — * DRSOM has rapid convergence
< i (30 epochs)
75(J 2‘0 40 60 8‘0 100 75() 2I0 40 60 8‘0 100 ° DRSOM needs Iittle tuning
Trainina results for ResNet18 with DRSOM and Adam cons
— N L — * DRSOM may overfit the models
—ma | —ww | * Needs 4~5x time than Adam to
, run same number of epoch
Good potential to be a standard
I e optimizer for deep learning!
epoch epoch

Test results for ResNetl18 with DRSOM and Adam



DRSOM for Policy Gradient (PG) (Liu et al. SHUFE)

* As mentioned above, the goal is to maximize the expected discounted trajectory reward:
maxgeﬁd J(Q) . — ETmp(ﬂH IR T ‘ Q)d’T
* The gradient can be estimated by:
R . o
VJ(0) = 1 Yiep Viogp (7 | ) R (7:)

* With the estimated gradient, we can apply DRSOM to get the step size a, and update the
parameter by:

Qt-l—l — 0; + Od%ﬁj(gt) —+ Oﬁ% d;

where d; Is the momentum direction.



DRSOM/ADAM/SGD Preliminary Results |

We compare the performance of DRSOM-based Reinforce with Adam-based reinforce and SGD-based

reinforce(with(msgd) and without(sgd) momentum) on several GYM environments.
We set the learning rate of Adam and SGD both as 1e-3, and momentum of MSGD as 0.99
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— drsom —=_adam —— sqd msgd — drsom —— adam sqd NSsge
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
timestep # ! timestep # e

In these two cases, DRSOM converges faster and gain higher return than other algorithms. And also DRSOM
seems to be more steady.
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DRSOM/ADAM/SGD Preliminary Results Il

InvertedDoublePendulum-v2

Hopper-v2
—— drsom —— adam — sqgd msgd —— drsom —— adam
350+
140
300+
120
250
-
| -
=
200 @ 100.
2 100
>
150 <
80 /
100
60-
50' /
0_

—— sqgd msgd

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2
timestep # <

In these two cases, DRSOM performs better than SGD but worse than ADAM.
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DRSOM for TRPO | (Xue et al. SHUFE)

* TRPO attempts to optimize a surrogate function (based on the current iterate) of the
objective function while keep a KL divergence constraint

IMaxg Lgk(f))
st KL (Pry || Pre) <4

* |n practice, It linearizes the surrogate function, quadratizes the KL constraint, and obtain

maxg g’ (0 —6;)
st. S (0—60r)" Fr(60—0) <6

where F;, Is the Hessian of the KL divergence.



DRSOM/TRPO Preliminary Results |

* Although we only maintain the linear approximation of the surrogate function, surprisingly the
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Average Discounted Return

DRSOM/TRPO Preliminary Results |l

* Sometimes even better than TRPO !
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DRSOM/TRPO Preliminary Results llI
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DRSOM for Riemannian Optimization (Tang et al. NUS)

min  £(x) (ROP)

@ M is a Riemannian manifold embeded in Euclidean space R".

@ f:R" — R is a second-order continuously differentiable function that is lower

bounded in M.
R-DRSOM: Choose an initial point xo € M, set Kk =0, p_1 = 0O;
for Kk =0,1,..., T do

Step 1. Compute gx = gradf(x«), dic = T ., (Pxk—1), Higx = Hessf(xx)|[gx] and

dek = HeSSf(Xk)[dk];

— (8k> 8k) 5,
<gk? dk)xk
(&K, Hkgr),, ~ (—dk, Hkgk) G — | (88K —(dk, 8K),

’ 9 k -— .

(—dk, Hegi),,  (dk, Hkdk) — (dk, 8k}, (di, dic) .,

Step 3. Solve the following 2 by 2 trust region subproblem with radius Ay > 0

Step 2. Compute the vector ¢, = [ ] and the following matrices

Q= |

: 1
Qe 1= ar min f(x )+ cl oo+ o' Qrax:
“ gllﬁfkllckﬁék (>) “ 2 “
Step 4. xxi+1 := R, (xk — i gk + aidk);
end
Return xi.



1D-Kohn-Sham Equation

min{%tr(RTLR) | jdiag(RRT)TL_ldiag(RRT): R'R =1, ReR””}, (3)

where L is a tri-diagonal matrix with 2 on its diagonal and -1 on its subdiagonal and
o > 0 is a parameter. We terminate algorithms when ||gradf(R)|| < 10™*.
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Figure 1: Results for Discretized 1D Kohn-Sham Equation. o = 1.



Ongoing Research and Future Directions on DRSOM

 How to enforce or remove Assumption c) in algorithms/analyses

 How to design a more adaptive-radius mechanism with the same complexity
bound, e.qg., the trust-region framework of Curtis et al., 2017

* |Incorporate the second-order steepest-descent direction, the eigenvector of the
most negative Hessian eigenvalue

* Indefinite and Randomized Hessian rank-one updating vs BFGS
 Dimension Reduced Non-Smooth/Semi-Smooth Newton

 Dimension Reduced Second-Order Methods for optimization with more
complicated constraints



Today’s Talk

* New developments of ADMM-based interior point (ABIP) Method
* Optimal Diagonal Preconditioner and HDSDP
* A Dimension Reduced Second-Order Method

* SOLNP+: a Derivative-Free Optimization Solver



Derivative-Free General Nonlinear Optimization

min__pa f(s) _
s.t. hy(s) = 0, Adding Slack Variables 1L pa  f ()
I < ha(s) <w,, WP s.tog(z) =0,
o < s < u,. [, <o < U,.

* All functions are smooth functions.

* The solver only has access to zero-order information.
* Function evaluation may be expansive.

* There may be some noises In function evaluation.

* Many applications in real practice.



SOLNP+: Overview

* History
* First proposed by Professor Ye in 1989.
* Originally implemented (SOLNP) in Matlab, 1989.
* R implementation (Rsolnp) by Alexios Ghalanos and Stefan Theussl, 2011.

* New C implementation (SOLNP+) with improvements, 2022.

* Framework

* Use finite difference to approximate the gradient.
* Approximate the constraints by linear function.

* Use Augmented Lagrangian Method (ALM) to solve the nonlinear
constrained problem.

* Use Sequential Quadratic Programming (SQP) and BFGS update to solve
ALM subproblems.




SOLNP+ : Approximate Gradient and Constraints

* Use finite difference to calculate the approximated gradient.

T+ de;) — f(x
Vif(z)|i = ft 5) ft ):.

e; = [0, .1, - 0].

* Adaptively choose § to Increase robustness.
* Approximate the nonlinear constraints by linear function:

glx) =20 E— g(rr) + ngg(x;;)ih(x —x) =0



SOLNP+ Quter lteration: ALM Framework

* Modifled Augmented Lagrangian function

Le(x,y) = f(z) —y" [g9(x) — (g9(xx) + Vs, g9(zr)" (2 — x1))]
i p; lg(x) — (9(zr) + Vi, 9(zi)" (z — fi?kﬂ”i *
* Primal Update (Robinson, 1972):

min Ly (x, yi)

s.t. g(xp) + ngg(ar;f_)T(:I: —xp) = 0,
Z;r. <z < U,

where ;. 1S the approximated Lagrange multiplier with respect to the
Inear constraints.




Solve ALM Subproblem: Find Feasible Solution

* The linearized problem may not be feasible.
* Find (approximated) feasible solution z} by solving the following LP.

min 7
st. g(zk)(1 — 7) + Vo, g(ar)T (z — z) = 0,
7T >0

* When 7 Is small, we find a near feasible start point.
* Start from =z, move along the direction that is in the null space
of V{gkg,r(;i:;{)'f.



SOLNP+ Inner Iteration: SQP and BFGS Update

* SOLNP+ generates the following sequential quadratic programming
(SQP) to solve the ALM subproblem.

1 ,
min E(:{ —a)) Hj(x — x3) + Vs, Li(zh. yp)' (x — z},)
s.t. g(xp) + Vrjkg(ﬁz:;ﬂ)T(a: — x) = by,

Z;}J é L < E’{’;l.‘. .

where p, = g(xr) + ngg(;zjk)ih (:53 — ;1:;3) and BFGS update;

. N 's)(His)"
H, ™ = H+ — Sl T( K~ H) =1
tt s S Hia
Where T = Vrth;b( H_l ljgl) VGKLL( y;{) and s = ’Ii_I_l — J?i,_.

» Use Lagrange mu\Upher of linear Constraints as an approximation to the real
multiplier.




Computation Aspects for SOLNP+

* Heuristics to update the penalty parameter

Pl |

* Restart when the algorithm cannot make any progress.

* Line search to improve quality of solution.

* Adaptively choose g, to Increase robustness.
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Computational Results: Functions without Noise

| | | | | | | | | | peon | i Number of Evaluations Objective Function Value
0.9 s50LNP+ SOLNP+ | NOMAD | COBYLA SOLNP+ NOMAD COBYLA
0.8 EEQ‘?FFI hs11 2 41 312 53 -8.49787e+00 | -8.49846e+00 | -5.49846e+-00
E 0.7 | hs26 3 81 326 146 1.43427e-06 3.56000e+00 2.11600e+01
A hs28 3 61 363 60 1.30568e-09 0.00000e+00 2.98619e-09
E -6 hs38 4 165 625 460 1.62759e-05 2.25010e-13 7.87702e+00
E 0.5 hs40 4 74 239 76 -2.50025e-01 | -2.40655e-01 -2.50000e-01
S 04 hs46 5 272 252 D37 1.30387e-09 3.33763e+00 9.24220e-06
gﬂ.ﬂ hsb6 T 158 383 263 -3.45603e+00 | -1.00000e4-00 | -3.456161e-+00
= hsT8 5 82 296 110 -2.91974e+00 | 2.73821e+00 | -2.91970e+00
a O hs79 5 7H 353 101 7.87804e-02 1.72669e-01 T.87768e-02
0.1 hs80 5 104 312 96 5.39484e-02 | 2.590245e-01 5.39499e-02
ot ¥ hs81 | 5 138 328 153 5.39470e-02 | 1.21224e-01 | 5.39499¢-02
0 1000 2000 3000 4000 5000 6000 7000 8OO0 35000 hs84 5 217 1818 108 -5.28034e+06 | -5.28019e+06 | -5.28033e+06
Function evalubions hso3 | 6 148 301 2367 | 1.35083¢+02 | 1.36548¢+02 | 1.35076e+02
Figure 1: Test result of 74 problems in Hock and Schittkowski Hock and Schittkowski hs106 8 230 2670 4000 7.08435e+03 | 7.66634e+03 | 8.94830e+03

[1980] problems. Total running time of SOLNP+, NOMAD, COBYLA are 1.228696e+00s,
2.251209e+03s and 5.324220e+4-00s.

Table 1 : Test results on selected Hock and Schittkowski problems.
The blue color means that the solver returns an approximate optimal
solution with better quality.

TM Ragonneau and Z Zhang. Pdfo: Cross-platform interfaces for powells derivative-free optimization solvers (version 1.1), 2021.

Le Digabel, Sébastien. "Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm." ACM Transactions on Mathematical Software (TOMS) 37.4 (2011): 1-
15.and Christophe Tribes.



Computational Results: Functions with Noise

, , . Average Number of Evaluations Average Objective Function Value
* We consider the following problem, |z { o SOLNP | SOLNP+ | NOMAD | COBYLA SOLNP SOLNP+ NOMAD COBYLA
: hsil | 2 | 18497 | 3504 | 24334 | 4354 | 4.64631e140(20/30) | -8.46861eL00 -8.49979-+00 -8.42549¢-400
I, R f (:E) hs26 | 3 | 32064 | 18806 | 21444 | 446 194628e401 | 203551e-01(1/50) |  3.36801e+00 2.11601e-01
s 1 g‘(ﬂ?) _ U:, hs28 | 3 | 3176 | o854 | 31852 | 6068 0.46492e--00 1.26202e-07 ) 72740e£00 1.67747e-04
hs38 | 4 | 4244 | 2444 | TI06 | 26138 687878103 R 45308e-01 2.0393726-10 79364400
i'-;zr ST X Ug. hed | 4 | 38833 | 4558 | 18388 | 6704 | -L.O4623e01(47/50) |  -2.50324e-01 2.39641e-01 2.49996e-01
with observed value hst6 | 5 | 56702 | 12074 | 20174 | 11102 3.28695¢-+-00 1.44609-05 333753 +00 1.60205e-+00
~ hss6 | 7 | 23104 | 53178 | 385.80 | 13398 100015600 3.37944e--00 0.999826.01 -3.45015e400(1/50)
f( x) — f (:r) (1 1+ o N | ( $))? hs78 | 5 : 11860 | 21152 | 7358 (50/50) 2.91860¢-+00 .74458e-100 2.91955-400
N hso | 5 i 7936 | 27440 | 7960 (50/50) 7 88070e-02 133017601 7 877896-02
g (Qj) — Y (Qﬁ) (1 + O N 2 (LI?)) hssD | 5 : 8718 | 21518 | 6888 (50/50) 5.40260¢-02 7 54378e-02 5.305456-02
hssl | 5 : 14174 | 20700 | 125.14 (50/50) 5.30633e-02 1.02641e-01 5.30499¢-02
where N E(g_f;) ~ [N (O_J Ji ) 1.1 d. hssd | 5 | 1638 | 23644 | 60465 | 35844 0495416106 5195166406 | -5.26203e06(30/30) | -5.24458e+06(41/50
hs3 | 6 | 90050 | 76690 | 25668 | 8638 1.37050e--02 136190102 1412906402 1.35022¢-402
, 0 = 10_4 _ hs106 | 8 | 103624 | 38108 | 1457.40 | 8230 | L.498T3eL04(33/30) |  1.50467eL04 779653103 1499716404

Table 2: Test results with noise on selected Hock and Schittkowski Hock and Schittkowski [1980] problems. Each exper-

iment is repeated 50 times. The blue color means that the solver returns a solution with better quality”(fail time /total

* It the infe3asibi\ity of the point is less
than 1077, we regard It as feasible
point.

time )" means the number of times for which the solvers return an infeasible solution. The average is taken for all the
feasible solutions returned by the solver. Total test time of SOLNP, SOLNP+, NOMAD and COBYLA are 2.87135e-01,

1.59820e-01, 1.76231e+02 and 1.70019e-01 seconds.



Computational Results: Tumor Growth Problem

1111) P* = P(tend) T ﬁg{fencl} T ('QP(TEI]CI)

t] e -_t]'?-_ﬂ'l TN £
s.T. 0 <7t < land. 1 =1,---n.

0<a; <1. 1=1.---n.

0 < max C(7) < Umax-

tE[ﬂ,iend]
tend
0 < (_f(t}df < Ucum-

At time 1; , we give drug of dosage (; to the
patient. p* Is the size of tumor at the end of the
treatment. ('(¢) Is the drug concentration. They
are calculated by solving an ODE.
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Figure 1: Convergence histories of the objective value.
| Number of Evaluations Objective Function Value
Problem | Dim - - -
SOLNP+ | NOMAD | COBYLA | SOLNP+ NOMAD COBYLA
Tumor ol 3000 3000 270 2.41949e+00 | 2.57695e+00 | 1.31129e4-01
Infeasibility Running Time/s
SOLNP—+ NOMAD COBYLA SOLNP+ NOMAD COBYLA
5.31037e-09 | 0.00000e+00 | 0.00000e4+00 | 5.06375e+00 | 3.28349e+01 | 9.16734e-01

Table 3: Final output in the tumor problem of three solvers.




Summary of SOLNP+

* Able to make use of dual information.

Provide estimation of both primal and dual solutions.
~aster speed In small problems.
Robust under noise.
Nonconvex QP sub-problem solver

Takeaways

Algorithm customization 1s necessary
Second-order information matters
View optimization iterative process as an online learning process

* THANK YOU



