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Today’s Talk

• New developments of ADMM-based interior point (ABIP) Method

• Optimal Diagonal Preconditioner and HDSDP

• A Dimension Reduced Second-Order Method

• SOLNP: a Derivative-Free Optimization Solver



Introduction to ADMM

● Consider the following convex optimization problem

min 𝑓 𝒙

s.t. 𝑨 𝒙 = 𝒃

𝒙 ∈ 𝜲

● Where 𝑓 is a convex function, and 𝜲 the Cartesian product of possibly non-

convex, real, closed, nonempty sets.

● The corresponding augmented Lagrangian function is

𝐿(𝒙, 𝝀)𝒙 ∈ 𝜲 = 𝑓 𝒙 − 𝝀𝑇 𝑨𝒙 − 𝒃 +
𝜌

2
||𝑨𝒙 − 𝒃||2

2

where 𝝀 is the Lagrangian multipliers or dual variables, and 𝜌 > 0 is the

step size.



Two-block ADMM with separable objectives

● Consider the following optimization problem

min 𝑓 𝒙 + 𝑔(𝒔)

s.t. 𝑨 𝒙 + 𝑩𝒔 = 𝒃

𝒙 ∈ 𝜲, 𝒔 ∈ 𝑺

● The corresponding augmented Lagrangian function is

𝐿(𝒙, 𝒔, 𝝀)𝒙∈𝜲, 𝒔∈𝑺 = 𝑓 𝒙 + 𝑔(𝒔) − 𝝀𝑇 𝑨𝒙 + 𝑩𝒔 − 𝒃 +
𝜌

2
||𝑨𝒙 + 𝑩𝒔 − 𝒃||2

2

● The two-block ADMM with separable objective is guarantee to converge.



Multi-Block Cyclic ADMM algorithm

● We could also consider multiple blocks. Let 𝒙 = [𝒙1, 𝒙2, … , 𝒙𝑏] if they have 

separable objectives

● Direct extension of multi-block (cyclic) ADMM updates as follows



Direct extension of three-block ADMM does not converge



Randomly Permuted - ADMM (RP - ADMM) (Sun et al. 2016, 

Chen et al. 2019)

In each cycle of ADMM

● Randomly generate a permutation of 1,…,b; and following the 

permutation order to update 𝒙i sequentially.

● Update the multipliers the same way.

● RP - ADMM is guaranteed to converge in expectation. 

Other methods need additional cost to overcome the divergence!



Performance on the diverging example



ADMM Based Interior-Point (ABIP) Method (Lin et al 2021, Deng et al. 2022) 

• Different strategies/parameters may be significantly different among problems being solved

• An integration strategy based on decision tree is integrated into ABIP

Dimension

Sparsity

Constraint

Coefficient

Null Objective

…

Strategy 1 (restart)

Strategy 2 (scaling)

…

Strategy k (µ reduction)

• A simple feature-to-strategy mapping is derived from a machine learning model

• For generalization limit the number of strategies (2 or 3 types)



ABIP – Restart Strategy I

Instance SC50B (only plot the first two dimension,)

• ABIP tends to induce a spiral trajectory



ABIP – Restart Strategy II

Instance SC50B (only plot the first two dimension, after restart)

• After restart, ABIP moves more aggressively and converges faster (reduce almost 70% ADMM 

iterations) ! 



ABIP – Netlib

• Hybrid 𝜇 : If 𝜇 > 𝜖 use the aggressive strategy, otherwise use another strategy

• ABIP+ decreases both # IPM iterations and # ADMM iterations significantly

• Selected 105 Netlib instances

• ϵ = 10−6, use the direct method, 106 max ADMM iterations



ABIP – MIP2017

• 240 MIP2017 instances

• ϵ = 10−4, presolved by PaPILO, use the direct method, 106 max ADMM iterations

• PDLP (Lu et al. 2021) is a practical first-order method (i.e., the primal-dual hybrid gradient 

(PDHG) method) for linear programming, and it enhences PDHG by a few implementation 

tricks.

• SGM stands for Shifted Geometric Mean, a standard measurement of solvers’ performance



ABIP – PageRank 

• 117 instances, generated from sparse matrix datasets: DIMACS10, Gleich, Newman and SNAP. 

Second order methods in commercial solver fail in most of these instances.

• ϵ = 10−4, use the indirect method, 5000 max ADMM iterations.  

• Examples:



• Generated by Google code

• When # nodes equals to # edges, the generated instance is a staircase matrix. For example,

Staircase matrix instance (# nodes = 10)

410410

ABIP – PageRank

• In this case, ABIP+ is significantly faster than PDLP!



ABIP iteration remains valid for general conic linear program 

● ABIP-subproblem requires to solve a proximal mapping 𝑥+ = argmin 𝜆𝐹 𝑥 +
1

2
𝑥 − 𝑐 2 with respect to the log-barrier 

functions 𝐹 𝑥 in 𝐵(𝑢, 𝑣, 𝜇𝑘)

Positive orthant

● 𝐹 𝑥 = −log 𝑥

● 𝑥 = argmin 𝜆𝐹 𝑥 +
1

2
𝑥 − 𝑐 2

=
𝑐+ 𝑐2+4𝜆

2

● The total IPM and ADMM iteration complexities of ABIP for conic linear program are respectively:

𝑇𝐼𝑃𝑀 = 𝑂 log
1

𝜀
,    𝑇𝐴𝐷𝑀𝑀 = 𝑂(

1

𝜀
log

1

𝜀
)

Positive Semidefinite cone

Second-order cone

● 𝐹 𝒙 = − log 𝑡2 − 𝑥 2 , 𝒙 = (𝑡; 𝑥)
● Can be solved by finding the root of 

quadratic functions

● 𝐹 𝒙 = − log det 𝑥
● Equivalent to solve −𝜆𝑥−1 − 𝑐 + 𝑥 = 0
● Can be solved by eigen decomposition

Positive semidefinite cone

ABIP – Extension to Conice Linear Program



ABIP – Customization for ML

ABIP solves linear system:

elimination

● if 𝐴 is a general sparse matrix, we prefer augmented 

system, which is solved by sparse LDL decomposition
● If 𝐴 is dense or it has highly different row and col 

dimensionalities, we prefer normal equation 

For many QP problems in machine learning, we provide customized linear system solver by applying 

Sherman-Morrison-Woodbury formula and simplifying the normal equation

LASSO

● Data matrix  𝐴 of LASSO has 𝑛 features, 𝑚 samples

● The dimension of factorized matrix reduced from 

2𝑚 + 2𝑛 + 3 to min{𝑚, 𝑛}

SVM

● Data matrix  𝐴 of SVM has 𝑛 features, 𝑚 samples

● The dimension of factorized matrix reduced from 

3𝑚 + 4𝑛 + 5 to 𝑛 + 1



ABIP – SVM 

• For 6 large instances from LIBSVM, ϵ = 10−3, time limit = 2000s



Summary

• a general purpose LP solver 

• using ADMM to solve the subproblem

• developed with heuristics and intuitions from various strategies

• equipped with several new computational tricks

• Smart dual updates?

ABIP is 



Today’s Talk

• New developments of ADMM-based interior point (ABIP) Method

• Optimal Diagonal Preconditioner and HDSDP

• A Dimension Reduced Second-Order Method

• SOLNP: a Derivative-Free Optimization Solver



HDSDP: Homogeneous Dual-Scaling SDP solver



Interior point method for SDPs

SDP is solvable in polynomial time using the interior point methods

• Take Newton step towards the perturbed KKT system

• Efficient numerical solvers have been developed

COPT, Mosek, SDPT3, SDPA, DSDP…

• Most IPM solvers adopt primal-dual path-following IPMs except DSDP

DSDP (Dual-scaling SDP) implements a dual potential reduction method



Homogeneous dual-scaling algorithm

From arbitrary starting dual solution (𝑦, 𝑆 ≻ 0, 𝜏 > 0) with dual 

residual R

New strategies are tailored 

for the method 

• Primal iterations can still be fully eliminated

• inherits sparsity pattern of data

Less memory and since 𝑋 is generally dense

• Infeasibility or an early feasible solution can be detected via the 

embedding 



Computational aspects for HDSDP Solver

To enhance performance, HDSDP (written in ANSI C) is equipped with

• Pre-solving that detects special structure and 
dependency

• Line-searches over barrier to balance optimality & 
centrality

• Heuristics to update the barrier parameter 𝜇

• Corrector strategy to reuse the Schur matrix 

• A complete dual-scaling algorithm from DSDP5.8

• More delicate strategies for the Schur system



Computational results

• HDSDP is tuned and tested for many benchmark datasets

• Good performance on problems with both low-rank structure and sparsity

• Solve around 70/75 Mittelmann’s benchmark problems

• Solve 90/92 SDPLIB problems

(Results run on an intel i11700K machine)

Selected Mittelmann’s benchmark problems where HDSDP is fastest (all the constraints are rank-one)



Optimal Diagonal Pre-Conditioner [QGHYZ20]

Given matrix 𝑀 = 𝑋⊤𝑋 ≻ 0, iterative method (e.g., CG) is often applied to solve

𝑀𝑥 = 𝑏

• Convergence of iterative methods depends on the condition number 𝜅(𝑀)

• Good performance needs pre-conditioning and we solve 𝑃−1/2𝑀𝑃−1/2𝑥′ = 𝑏

A good pre-conditioner reduces 𝜅(𝑃−1/2𝑀𝑃−1/2)

• Diagonal 𝑃 = 𝐷 is called diagonal pre-conditioner

Is it possible to find optimal 𝐷∗ and 𝐸∗ ? SDP works!

More generally, we wish to find 𝐷 ( or 𝐸 ) such that 𝜅(𝐷 ⋅ 𝑋 ⋅ 𝐸) is minimized ?



Application: Optimal Diagonal Pre-Conditioner

• Finding the optimal diagonal pre-conditioner is an SDP

• Two SDP blocks and sparse coefficient matrices

• Trivial dual interior-feasible solution

• An ideal formulation for dual SDP methods 𝐷 = ∑𝑑𝑖𝑒𝑖𝑒𝑖
𝑇

What about two-sided ?



Two-Sided Pre-Conditioner 

• Common in practice and popular heuristics exist 

e.g. Ruiz-scaling, matrix equilibration & balancing

• Not directly solvable using SDP

• Can be solved by iteratively fixing 𝐷1(𝐷2) and optimizing the other side

Solving a sequence of SDPs

• Answer a question: how far can diagonal pre-conditioners go



Computational Results: Solving for the Optimal Pre-Conditioner

• Perfectly in the dual form 

• Trivial dual feasible interior point solution 

• 1 is an upper-bound for the optimal objective value

SDP from optimal drag pre-conditioning problem HDSDP

• A dual SDP algorithm (successor of DSDP5.8 by Benson)

• Support initial dual solution

• Customization for the diagonal pre-conditioner



Computational Results: Optimal Diagonal Pre-Conditioner

• Test over 491 Suite Sparse Matrices of fewer than 1000 columns

• LIBSVM datasets

Distribution of condition number reduction 

0.5 means 70% reduction in condition number

1 means 90% and 2 means 99% reduction 

in condition number



Summary

• a general purpose SDP solver 

• using dual-scaling and simplified HSD

• developed with heuristics and intuitions from DSDP

• equipped with several new computational tricks

• more iterative methods for solving subproblems?

HDSDP is 
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min 𝑓(𝑥), 𝑥 ∈ 𝑋 𝑖𝑛 ℝ𝑛,

• where  𝑓 is nonconvex and twice-differentiable,

𝑔𝑘 = 𝛻𝑓(𝑥𝑘), 𝐻𝑘 = 𝛻2𝑓(𝑥𝑘)

• Goal: find 𝑥𝑘 such that:

∥ 𝛻𝑓(𝑥𝑘) ∥≤ 𝜖 (primary, first-order condition)

𝜆𝑚𝑖𝑛(𝐻𝑘) ≥ − 𝜖 (in active subspace, secondary, second-order condition) 

• For the ball-constrained nonconvex QP: min 𝑐𝑇𝑥 + 0.5𝑥𝑇𝑄𝑥 𝑠. 𝑡. ∥ 𝑥 ∥ 2 ≤1   

O(loglog(𝜖-1)); see Y (1989,93), Vavasis&Zippel (1990)

• For nonconvex QP with polyhedral constraints: O(𝜖-1); see Y (1998), Vavasis

(2001)

Early Complexity Analyses for Nonconvex Optimization



Standard methods for general nonconvex optimization I

First-order Method (FOM): Gradient-Type Methods

• Assume 𝑓 has 𝐿-Lipschitz cont. gradient 

• Global convergence by, e.g., linear-search (LS)

• No guarantee for the second-order condition

• Worst-case complexity, 𝑂 𝜖−2 ; see the textbook by Nesterov (2004)

Each iteration requires O(n2) operations



Second-order Method (SOM): Hessian-Type Methods

• Assume 𝑓 has 𝑀-Lipschitz cont. Hessian 

• Global convergence by, e.g., linear-search (LS), Trust-region (TR), or 

Cubic Regularization 

• Convergence to second-order points

• No better than 𝑂 𝜖−2 , for traditional methods (steepest descent and 

Newton); according to Cartis et al. (2010) .

Each iteration requires O(n3) operations

Standard methods for general nonconvex optimization II



Variants of SOM

• Trust-region with the fixed-radius strategy, 𝑂(𝜖−3/2), see the lecture notes 

by Y since 2005

• Cubic regularization, 𝑂(𝜖−3/2), see Nesterov and Polyak (2006), Cartis, 

Gould, and Toint (2011)

• A new trust-region framework, 𝑂(𝜖−3/2), Curtis, Robinson, and Samadi

(2017)

With “slight” modification, complexity of SOM reduces from 𝑂(𝜖−2) to 𝑂(𝜖−3/2)

Analyses of SOM for general nonconvex optimization since 2000



• Two-directional FOM, with 𝑑𝑘 being the momentum direction (𝑥𝑘 − 𝑥𝑘−1)

𝑥𝑘+1= 𝑥𝑘 − 𝛼𝑘
1𝛻𝑓(𝑥𝑘) + 𝛼𝑘

2𝑑𝑘 = 𝑥𝑘+ 𝑑𝑘+1

where step-sizes are constructed; including CG, PT, AGD, Polyak, ADAM and many others. 

• In SOM, a method typically minimizes a full dimensional quadratic Taylor expansion to obtain 

direction vector 𝑑𝑘+1. For example, one TR step solves for 𝑑𝑘+1 from

min𝑑 𝑔𝑘
𝑇𝑑 + 0.5𝑑𝑇𝐻𝑘𝑑 𝑠. 𝑡. ||d||2 ≤ Δ𝑘

where Δ𝑘 is the trust-region radius.

• DRSOM: Dimension Reduced Second-Order Method

Motivation: using few directions in SOM 

Motivation from multi-directional FOM



• The DRSOM in general uses m-independent directions

𝑑(α): = 𝐷kα , 𝐷k ∊ Rnm, α∊ Rm

• Plug the expression into the full-dimension TR quadratic minimization problem, 

we minimize a  m-dimension trust-region subproblem to decide “m stepsizes”:

min 𝑚𝑘
α α ≔ 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘
≤ Δ𝑘

𝐺𝑘= 𝐷𝑘
𝑇𝐷𝑘, 𝑄𝑘 = 𝐷𝑘

𝑇𝐻𝑘𝐷𝑘, 𝑐𝑘 = 𝑔𝑘
𝑇𝐷k

How to choose Dk? How great would m be? Rank of  Hk?

(Randomized) rank reduction of a symmetric matrix to log(n) (So et al. 08)?

DRSOM I



• In following, as an example, DRSOM adopts two FOM directions

𝑑 = −𝛼1 𝛻𝑓 𝑥𝑘 + 𝛼2 𝑑𝑘 ∶= 𝑑(α)

where 𝑔𝑘 = 𝛻𝑓 𝑥𝑘 , 𝐻𝑘 = 𝛻2𝑓 𝑥𝑘 , 𝑑𝑘 = 𝑥𝑘 − 𝑥𝑘−1

• Then we minimize a  2-D trust-region problem to decide “two step-sizes”:

min 𝑚𝑘
α α ≔ 𝑓 𝑥𝑘 + 𝑐𝑘

𝑇α +
1

2
α𝑇𝑄𝑘𝛼

||α||𝐺𝑘
≤ Δ𝑘

𝐺𝑘 =
𝑔𝑘

𝑇𝑔𝑘 −𝑔𝑘
𝑇𝑑𝑘

−𝑔𝑘
𝑇𝑑𝑘 𝑑𝑘

𝑇𝑑𝑘

, 𝑄𝑘 =
𝑔𝑘

𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘
𝑇𝐻𝑘𝑑𝑘

−𝑔𝑘
𝑇𝐻𝑘𝑑𝑘 𝑑𝑘

𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||2

𝑔𝑘
𝑇𝑑𝑘

DRSOM II



DRSOM III

DRSOM can be seen as:

• “Adaptive” Accelerated Gradient Method (Polyak’s momentum 60)

• A second-order method minimizing quadratic model in the reduced 2-D 

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)𝑇𝑑 +
1

2
𝑑𝑇𝛻2𝑓(𝑥𝑘)𝑑, 𝑑 ∈ 𝗌𝗉𝖺𝗇{−𝑔𝑘, 𝑑𝑘}

compare to, e.g., Dogleg method, 2-D Newton Trust-Region Method

𝑑 ∈ 𝗌𝗉𝖺𝗇{𝑔𝑘 , [𝐻(𝑥𝑘)]−1𝑔𝑘} (e.g., Powell 70)

• A conjugate direction method for convex optimization exploring the Krylov

Subspace (e.g., Yuan&Stoer 95)

• For convex quadratic programming with no radius limit, terminates in n steps



Computing Hessian-Vector Product in DRSOM is the Key

In the DRSOM with two directions:

𝑄𝑘 =
𝑔𝑘

𝑇𝐻𝑘𝑔𝑘 −𝑔𝑘
𝑇𝐻𝑘𝑑𝑘

−𝑔𝑘
𝑇𝐻𝑘𝑑𝑘 𝑑𝑘

𝑇𝐻𝑘𝑑𝑘

, 𝑐𝑘 =
−||𝑔𝑘||2

𝑔𝑘
𝑇𝑑𝑘

How to cheaply obtain Q? Compute  𝐻𝑘𝑔𝑘 , 𝐻𝑘𝑑𝑘 first.

• Finite difference:

𝐻𝑘 ⋅ 𝑣 ≈
1

𝜖
𝑔(𝑥𝑘 + 𝜖 ⋅ 𝑣) − 𝑔𝑘 ,

• Analytic approach to fit modern automatic differentiation,

𝐻𝑘𝑔𝑘 = 𝛻(
1

2
𝑔𝑘

𝑇𝑔𝑘), 𝐻𝑘𝑑𝑘 = 𝛻(𝑑𝑘
𝑇𝑔𝑘),

• or use Hessian if readily available !



DRSOM: key assumptions and theoretical results (Zhang at al. SHUFE)

Theorem 1. If we apply DRSOM to QP, then the algorithms terminates in at most n 

steps to find a first-order stationary point

Theorem 2. (Global convergence rate) For f with second-order Lipschitz condition, 

DRSOM terminates in 𝑂(𝜖  −3 2) iterations.  Furthermore, the iterate 𝑥𝑘 satisfies the first-

order condition, and the Hessian is positive semi-definite in the subspace spanned by the 

gradient and momentum.

Assumption. (a)  𝑓 has Lipschitz continuous Hessian. (b) DRSOM iterates with a fixed-

radius strategy: Δ𝑘 = 𝜖/𝛽( c) If the Lagrangian multiplier 𝝀𝒌 < 𝝐 , assume 

∥ (𝑯𝒌 −  𝑯𝒌)𝒅𝒌+𝟏 ∥≤ 𝑪 ∥ 𝒅𝒌+𝟏 ∥𝟐 (Cartis et al.), where  𝐻𝑘 is the projected Hessian in the 

subspace (commonly adopted for approximate Hessian)

Theorem 3. (Local convergence rate) If the iterate 𝑥𝑘 converges to a strict local optimum 

𝑥∗ such that 𝐻(𝑥∗) ≻ 0, and if Assumption (c) is satisfied as soon as 𝜆𝑘 ≤ 𝐶𝜆 ∥ 𝑑𝑘+1 ∥, 

then DRSOM has a local superlinear (quadratic) speed of convergence, namely: ∥ 𝑥𝑘+1

− 𝑥∗ ∥= 𝑂(∥ 𝑥𝑘 − 𝑥∗ ∥2)



DRSOM: How to remove Assumption (c)？

• Global rate: ensure Assumption (c) holds periodically (whenever needed, e.g., switch to 

Krylov)

• Local rate: ensure Assumption (c) holds around 𝒙∗ ,we have the desired results.

Specifically, expand subspace if Assumption (c) does not hold…

• Carmon et al. (2018) find the NC (𝑂(𝜖−1/4) for each step) and proceed

• Run Lanczos (worst-case without sparsity 𝑂(𝑛3) )

• Trade-off between 𝑂(𝜖−7/4) (more dimension-free) and 𝑂(𝜖−3/2)



DRSOM: convergence behavior, an example

Example from the 

CUTEst dataset

• GD and LBFGS both 

use a Line-search 

(Hager-Zhang)

• DRSOM-F (2-D):

original 2-dimensional 

version with 𝑔𝑘 and 

𝑑𝑘

• DRSOM-F (periodic-

Krylov), guarantees 

∥ (𝐻𝑘 −  𝐻𝑘)𝑑𝑘+1 ∥≤ 𝐶

∥ 𝑑𝑘+1 ∥2 periodically.



Sensor Network Location (SNL)

• Consider Sensor Network Location (SNL)

where       is a fixed parameter known as the radio range. The SNL problem considers 

the    following QCQP feasibility problem,

• We can solve SNL by the nonconvex nonlinear least square (NLS) problem



Sensor Network Location (SNL)

• Graphical results using SDP relaxation to initialize the NLS

• n = 80, m = 5 (anchors), radio range = 0.5, degree = 25, noise factor = 0.05

• Both Gradient Descent and DRSOM can find good solutions !



Sensor Network Location (SNL)

• DRSOM can still converge to optimal solutions

• Graphical results without SDP relaxation



Neural Networks and Deep Learning 

To use DRSOM in machine learning problems

• We apply the mini-batch strategy to a vanilla DRSOM

• Use Automatic Differentiation to compute gradients

• Train ResNet18 Model with CIFAR 10

• Set Adam with initial learning rate 1e-3



Neural Networks and Deep Learning 

Training results for ResNet18 with DRSOM and Adam

Test results for ResNet18 with DRSOM and Adam

Pros

• DRSOM has rapid convergence 

(30 epochs)

• DRSOM needs little tuning

Cons

• DRSOM may overfit the models

• Needs 4~5x time than Adam to 

run same number of epoch 

Good potential to be a standard 

optimizer for deep learning!



DRSOM for Policy Gradient (PG) (Liu et al. SHUFE)

• As mentioned above, the goal is to maximize the expected discounted trajectory reward:

• The gradient can be estimated by:

• With the estimated gradient, we can apply DRSOM to get the step size 𝛼, and update the 
parameter by:

where 𝑑𝑡 is the momentum direction.



We compare the performance of DRSOM-based Reinforce with Adam-based reinforce and SGD-based

reinforce(with(msgd) and without(sgd) momentum) on several GYM environments.

We set the learning rate of Adam and SGD both as 1e-3, and momentum of MSGD as 0.99

In these two cases, DRSOM converges faster and gain higher return than other algorithms. And also DRSOM

seems to be more steady.

DRSOM/ADAM/SGD Preliminary Results I



In these two cases, DRSOM performs better than SGD but worse than ADAM.

DRSOM/ADAM/SGD Preliminary Results II



• TRPO attempts to optimize a surrogate function (based on the current iterate) of the 
objective function while keep a KL divergence constraint

• In practice, it linearizes the surrogate function, quadratizes the KL constraint, and obtain

where 𝐹𝑘 is the Hessian of the KL divergence. 

DRSOM for TRPO I (Xue et al. SHUFE)



DRSOM/TRPO Preliminary Results I

• Although we only maintain the linear approximation of the surrogate function, surprisingly the 

algorithm works well in some RL environments



DRSOM/TRPO Preliminary Results II

• Sometimes even better than TRPO ! 



DRSOM/TRPO Preliminary Results III



DRSOM for Riemannian Optimization (Tang et al. NUS)



1D-Kohn-Sham Equation



Ongoing Research and Future Directions on DRSOM

• How to enforce or remove Assumption c) in algorithms/analyses

• How to design a more adaptive-radius mechanism with the same complexity 

bound, e.g., the trust-region framework of Curtis et al., 2017

• Incorporate the second-order steepest-descent direction, the eigenvector of the 

most negative Hessian eigenvalue 

• Indefinite and Randomized Hessian rank-one updating vs BFGS

• Dimension Reduced Non-Smooth/Semi-Smooth Newton

• Dimension Reduced Second-Order Methods for optimization with more 

complicated constraints



Today’s Talk

• New developments of ADMM-based interior point (ABIP) Method

• Optimal Diagonal Preconditioner and HDSDP

• A Dimension Reduced Second-Order Method

• SOLNP+: a Derivative-Free Optimization Solver



Derivative-Free General Nonlinear Optimization

Adding Slack Variables

• All functions are smooth functions.

• The solver only has access to zero-order information.

• Function evaluation may be expansive. 

• There may be some noises in function evaluation.

• Many applications in real practice.



SOLNP+: Overview

• History
• First proposed by Professor Ye in 1989.
• Originally implemented (SOLNP) in Matlab, 1989.
• R implementation (Rsolnp) by Alexios Ghalanos and Stefan Theussl, 2011.
• New C implementation (SOLNP+) with improvements, 2022.  

• Framework
• Use finite difference to approximate the gradient.
• Approximate the constraints by linear function.
• Use Augmented Lagrangian Method (ALM) to solve the nonlinear 

constrained problem.
• Use Sequential Quadratic Programming (SQP) and BFGS update to solve 

ALM subproblems.



SOLNP+ : Approximate Gradient and Constraints

• Use finite difference to calculate the approximated gradient.

• Adaptively choose      to increase robustness.

• Approximate the nonlinear constraints by linear function:



SOLNP+ Outer Iteration: ALM Framework
• Modified Augmented Lagrangian function

• Primal Update (Robinson, 1972):

where      is the  approximated Lagrange multiplier with respect to the 
linear constraints. 



Solve ALM Subproblem: Find Feasible Solution

• The linearized problem may not be feasible.

• Find (approximated) feasible solution by solving the following LP.

• When      is small, we find a near feasible start point.      

• Start from     , move along the direction that is in the null space 

of                .        



SOLNP+ Inner Iteration: SQP and BFGS Update
• SOLNP+ generates the following sequential quadratic programming

(SQP) to solve the ALM subproblem.

where                                                and BFGS update:

Where                                                     and  

• Use Lagrange multiplier of linear constraints as an approximation to the real 
multiplier.                    



Computation Aspects for SOLNP+

• Heuristics to update the penalty parameter     .

• Restart when the algorithm cannot make any progress.

• Line search to improve quality of solution. 

• Adaptively choose      to increase robustness.          



Computational Results: Functions without Noise

TM Ragonneau and Z Zhang. Pdfo: Cross-platform interfaces for powells derivative-free optimization solvers (version 1.1), 2021.
Le Digabel, Sébastien. "Algorithm 909: NOMAD: Nonlinear optimization with the MADS algorithm." ACM Transactions on Mathematical Software (TOMS) 37.4 (2011): 1-
15.and Christophe Tribes.

Table 1 : Test results on selected Hock and Schittkowski problems. 
The blue color means that the solver returns an approximate optimal 
solution with better quality.



Computational Results: Functions with Noise

• We consider the following problem,

with observed value

where  

• If the infeasibility of the point is less 
than 10−3, we regard it as feasible 
point.



Computational Results: Tumor Growth Problem

At time      , we give drug of dosage       to the 
patient.         is the size of tumor at the end of the 
treatment.           is the drug concentration. They 
are calculated by solving an ODE.       



Summary of SOLNP+
• Able to make use of dual information.
• Provide estimation of both primal and dual solutions.
• Faster speed in small problems. 
• Robust under noise.
• Nonconvex QP sub-problem solver

Takeaways
Algorithm customization is necessary
Second-order information matters
View optimization iterative process as an online learning process 

• THANK YOU


