Weak Adversarial Network (WAN): A Deep
Learning Method for Forward and Inverse

Problems with High Dimensional PDEs

Haomin Zhou

School of Mathematics, Georgia Tech
Joint work with Gang Bao (Zhejiang), Xiaojing Ye (Georgia State),
and Yaohua Zang (Zhejiang)

Partially supported by NSF

1/28

Outline

WAN for Forward Problems

WAN for Inverse Problems

Conclusion and Outlook

2/28

Motivation

Goal: numerically solve forward and inverse problems with PDEs
in high dimensions.

example: elliptic equation in Q € RY (arbitrary shape),

— >0 0i(aoju) = f, in Q
u(x) — g(x) =0 (Dirichlet) on 9Q

Challenge: The computational cost for conventional methods
(Finite Difference, Finite Elements, Spectral, and others) becomes
intractable when the dimension is high.

Our Strategies: Leveraging a minimax framework (2-player game
strategy) and neural networks.

3/28

Neural Networks

Deep neural networks are compositions of multiple simple functions
(called layers) so that they can approximate complicated functions. For

example:

fa(x) = wi lk—1 0 -+ 0 Ip(x) + bk,

where k-th layer lx(z) = ox(Wiz + by) with weight Wj € R%+1Xd and
bias b, € R%+1. Parameters 6 are collections of (wk, b, W).

Training of neural networks: find the best parameters to minimize a loss

@
<7 —=\/

e
Y
A

Output fy(z) € R™

X
/S

Parameters 6

function: measuring the success of a task such as approximation.

4/28

Neural Networks (NNs) for numerical PDEs

NNs have been used to solve PDEs in the last three decades. Using
DNNs for high-dimensional PDEs emerged in the past few years, and
there are many more in developments.

» Use NNs to improve the standard methods: Lee-Kang '90,
Yentis-Zaghloul '96, Rudd-Ferrari '15,
Tompson-Schlachter-Sprechmann-Perlin '17, Suzuki '17, ...

» Use NNs to approximate the solutions directly, and they may be
friendly for high-dimensional problems, such as the physics-informed
NN (PINN), Ritz Net, backward-forward SDEs:
Dissanayake-Phan-Thien '94, Lagaris-Likas-Fotiadis '98,
Beck-E-Jentzen '17, Fujii-Takahashi-Takahashi '17, E-Han-Jentzen
'17, He-Li-Xu-Zheng '18, Berg-Nystrom '18, Magill-Qureshi-de
Haan '18, Cai-Xu '19, Raissi-Perdikaris-Karniadakis '19, ...

» Use NNs with the variational forms of PDEs, and solve PDEs
(SPDEs) by optimization: Nabian-Meidani '18, E-Yu '18,
Khoo-Lu-Ying 19, Anitescu-Atroshchenko-Alajlan-Rabczuk '19,
Yang-Perdikaris '19, ...

5/28

WAN formulation

The weak form of the solution, multiple the equation by a test function ¢

and perform integration by part,

(Alul,) =0
Blu] =0, on 90Q

example: for the elliptic equation,

d
<A[U],(p> £ /Q Z a,-jaju&-go — ng dx

ij=1

Why weak solution?
(a) Classical solution may not exist.

(b) Integral form is friendly to sample-based computation, which is
crucial for high dimension problems.

(c) Solution and test function are in a 2-player game, helping to

overcome the challenge of lack of data in neural network training.

6/28

A minimax problem

Theorem
Suppose u* satisfies the boundary condition B[u*] = 0, then u* is
a weak solution if and only if u* solves the problem

iy, max | (AL, 9

Furthermore, u* satisfies
[A[u*]llop = O,

where

IA[ulllep £ max{(Alul, ¢)/llll i | € Hp, ¢ # 0},

7/28

WAN framework

Idea:

» Weak solution u € H!, approximated by the primary NN uj,

» Test function ¢ € H&, approximated by the adversarial NN ¢,,.

> lteratively learn 6 to minimize || A[ug]||op with fixed ¢,, and
challenges ug by maximizing (A[ug], ¢,,) modulus its own
norm ||y || for every given ug .

Weak Adversarial Network

Discriminator e
Neural Network @,

up(x)

PDE Loss
x€ R?

Generator

Neural Network (1,¥5) Yo(x)

8/28

Loss Functions

The lost function used for training (optimization for the
parameters) may have many different choices. For example, the
following one is used in our computations,

moin max L(6,n), where L(6,n) = Lint(0,n) + aLpgry(6),
n
with

Lint(ea 77) £ |0g |<A[U9], 907]>|2 - IOg ||SOTIH%-I17

and
Lbary(0) 2 (1/Np) - M, Jup(x) — g ().

9/28

Weak solution v.s. classical solution

Au =2, in Q
u=g, on 022

Weak solution exists, but the classical solution doesn’t.

01 06 08 10

(b) us from classical form (c) u, from weak form

10/28

Nonlinear equation (d = 20)

{—v S(a(x)Vu) + 3| VulP = f(x) in Q2 (=1,1)7,
u(x) = g(x) on 0L

00010000 1
Iteration

11/28

L-shape domain (d = 10)

u(x) = g(x) on 09

1 1 10
09
05 05 06 05
03
3 00 00 00 & 00
-0
05 05 Lo 0B
_os
-1 -1 -10
%o 5 o0 05 1w %o b5 oo 05 10 1
z A

(a) u* vs uy (b) |ug — u*| (c) Error vs iteration

{—V-(a(x)Vu) =f(x) in Q2(=1,1)9\[0,1)¢

Relative error

12/28

Time dependent equation (d = 5)

ur — Au— u? = f(x, t), in Q x [0, T]
u(x,t) = g(x,t), on 9Q x [0, T]
u(x,0) = h(x), in Q

2 0
10 10 20 Lo— =
15
5 5 I 05
05 05 L0 0 A
05
5 00 00 00 & 00 g
o & 0.000
05 05 TR
0.003
-
1 . Y- 0.000
W o o om twbw on e 0m 1w G0 02 050 0 1w
t t

Relative error
f i

t

(a) u* vs uy (b) |ug — u*| (c) Error vs iteration

13/28

Features

» The primary and adversarial NNs are used to train each other.
No training data is needed.

» It is flexible in sampling points used to compute the integrals.
It fits the frameworks of un-supervised or supervised learning.

» It is mesh-less, basis-less.
P It seeks convergence only in up.

» It is different from existing methods (FEM, Spectral, FDM,
Collocation), not Galerkin based, no triangulation, no finite
element basis or Fourier basis, no enforcement on selected
points.

14 /28

Inverse problem

Goal: numerically solve inverse problems in high dimensions.

The PDEs in a high-dimension space Q € R¢:

Alu,v] =0, in Q (1)

Blu,Vu,v] =0, on 0Q
where A[u,y] may be a second order elliptic differential operator, such as
the electrical impedance tomography (EIT) Afu,~] = -V - (vVu) - f,
Blu,Vu,v] is the boundary value, u the solution and v the coefficient
function.

The inverse problem: Given the observations of B[u, Vu,~] on 02, find
(u,) that satisfies the equation (1).

Challenges: ill-posedness; instability; curse-of-dimensionality.
(Alessandrini 1987, Mandache 2001).

15/28

Recent deep learning approaches for inverse problems

DNNs have been used for solving inverse problem in the last three
decades. Here are partially selected works:

Martin-Choi '15, Tan-Lv-Dong-Takei '18, Yao-Wei-Jiang '109.
Martin-Choi '17, Kang-Min-Ye '17, Jin-Mccann-Froustey-Unser
'17, Hamilton-Hauptmann '18, Antholzer-Haltmeier-Schwab '19,
Wei-Liu-Chen '19.

Adler-oktem '17, Li-Schwab-Antholzer-Haltmeier '20.
Dadvand-Lopez-Onate '06, Khoo-Ying '18,
Raissi-Perdikaris-Karniadakis '19, Fan-Ying '19,
Jo-Son-Hwang-Kim 19, Bar-Sochen '19, and many more.

16/28

The equivalent minimax problem for the inverse problem

Define an operator norm

1AL, Mllop = max{(Alu, 7],)/ll¢llmi | ¥ € Ho, # 0},

Theorem

Suppose (u*, ~v*) satisfies the boundary condition
Blu*,Vu*,~*] =0, then u* is a weak solution if and only if
(u*,~v*) solves the problem

min max |[{A[u, 2 2
vt el o Hl\([u; 7],)7/l el

Furthermore, (u*, ~*) satisfies

IA[u"; 7"]llop = 0.

17/28

WAN framework for inverse problems

Idea:

> Weak solution u € H!, y € L? approximated by the primary
NN wug and g respectively.

» Test function ¢ € H&, approximated by the adversarial NN ¢,,.

> lteratively learn 6 to minimize ||.A[ug, Yp]||op With fixed ¢y,
and challenges up and 7y by adjusting ¢, to maximize

<A[U97’Y€]7907I>/H9077HH1 for every given (Ue. 70) .

The framework for the inverse problems is almost identical to that
for the forward problem.

18/28

Theorem

For any ¢ > 0, let {6;} be a sequence of the network parameters in
(us, Vo) generated by the stochastic gradient descent (SGD)
algorithm with integrals in VyL(0) approximated by sample
averages with sample complexities N,, N, = O(¢~1) in each
iteration, then mini<j<; E[|VyL(0;)|?] < € after J = O(e71)
iterations.

P This is the so-called e-convergence.

P It ensures an approximation to a stationary point only.

19/28

Key implementation issues

» Various optimization methods can be used for gradient descent or
ascent. We use AdaGrad for the test NN and Adam for solution
NN. Auto-differentiation is used to calculate derivatives.

» Use fully-connected feed-forward NNs for both the solution uy and
the test function . ug has 6 hidden layers with 40 neurons per
hidden layer, while ¢,, consists of 8 hidden layers with 40 neurons
per hidden layer. (Other NN structures can be used as well.)

» Calculate integrals by Monte Carlo method.

» Enforce ¢, = 0 on the boundary by setting ¢, = wv,,, where w =0
is pre-selected taking zero on 052, v, can be non-zero on the

boundary.

» Other loss functions may work too.

20/28

EIT with smooth conductivity (d=5, noise free)

(2)
(3)

—V-(wVu)—f=0, inQ=(-1,1)4

u—up=0,~v—7v =0, 05u—u, =0, on IR
where the conductivity 7 is a smooth function. (N, = 105,

N = 100d.)

0.064

1.00

1.00 100
075 20 075 0.056
0.50 1.6 0.50 0.0a8 5
0.25 0.25 0.040 5
12 .
>'<“ 0.00 ,’: 0.00 Y 0.032 Q10
=1
-0.25 0.8 -0.25 0.024 k]
]
-0.50 -0.50 0.016 o«
0.4
-0.75 -0.75 0.008
102
-1.00 0.0 -1.00. 0.000
~1.0 -05 00 05 1.0 ~1.0 -05 00 05 10)

5000 10000 15000 20000

X1 Iteration

(a) True v*

X1

(b) |v* — 7o (c) Error vs iteration

21/28

EIT with nearly piecewise conductivity (noise free)

—V-(7Vu)—f=0, inQ=(-1,1)¢ (4)
u—up,=0,v—7v =0, Ou—u,=0, on dQ (5)

where the conductivity 7 is a nearly piecewise function. (For
different dimension d, N, = 20000d, N, = 100d.)

1.00 1.00
0.75 1.95 0.75 0.18 100
0.15
0.50 1.65 0.50 5
0.25 0.25 0.12 5
< 0.00 135 X 0.00 0.09 210
-0.25 1.05 -0.25 &
0.06 @
-0.50 -0.50- «
-0.75 073 -0.75 0.03
-2
-1.00 045 -1.00, 0.00 1o
-1.0 -05 00 05 1.0 -0 -05 o0 05 10 o 5000 10000 15000 20000
X1 X1 Iteration
T * b) |v* for d =10 E [i
a) True v ¥* — yg| for d = c) Error vs iteration

22/28

EIT with nearly piecewise conductivity (with noise)

The problem is the same as that defined in (4) and (5),

—V-(yVu)—f=0, inQ=(-1,1)¢
u—up=0,~v—7v =0, 05u—u, =0, on I

where d = 5. (N, = 20000d, N, = 100d.)

100 100 100 -
noise level~
0.75; 0. 025 10° i =
— noise level=20%
050 0. o1
025 05 025
. - 4 .09
£ 0.00] — 0.00) s 0.00 1071
~02s o.06
o.03 ot
102
L0 g s 00 o 1Mo o5 00 05 o5 oo o5 lo 000 G 5000 10000 15000 20600
% % y

Relative error

Iteration

(a) |v* — 7| for noise level=5%,10%,20% (b) Error vs iteration

23/28

EIT with nonconvex conductivity (d=5, noise free)

100
4
5
2
2100
g
& 500 10600 15600 200
Iteration
S0
10
T 5000 10000 13000 700
tteration
100
4
¢
S0
g
& 500 10600 15600 700

Iteration

Figure: Left: True v*; Middle: |y* — vp|; Right: Error vs iteration

24 /28

Inverse thermal conductivity problem (d=5, with noise)

Oru—V-(yVu)—f =0, inQr=Qx][0,1]
u—ui=0, inQx{0}
Vu-i—u,=0, u—up=0, v—7,=0, ondQ x[0,1]

where y(u) = ki + kou with k; = 1.5 and ky = 0.6. (N, = 10°,
N = 100d.)

Relative error

02 03 04 05 06 07 08 05 10 [5000 10000 15600 20600
u Iteration

(a) vo(ug) vs up (b) Error vs iteration

Figure: inverse thermal conductivity problem with noise level= 0%, 10%,
20%.

25/28

Conclusion and Questions

» A minimax framework for PDEs.

» Using NN in high dimensions.

> A lot of open questions

» Convergent? Experiments indicate so.

» Accuracy? Examples are promising.

» Stability? Seems to be stable, no regularizer is used!
» Speed? There are rooms to improve.

P Improvement strategies are desirable.

26/28

References

> Bao G, Ye X, Zang Y, Zhou H. Numerical Solution of Inverse
Problems by Weak Adversarial Networks. Inverse Problems,
Vol 36, No. 11, 2020.

> Zang Y, Bao G, Ye X, Zhou H. Weak adversarial networks for

high-dimensional partial differential equations. Journal of
Computational Physics, Vol 411, 15 June 2020, 109409

27 /28

Thank you

o = = = = wac
28/28

	WAN for Forward Problems
	WAN for Inverse Problems
	Conclusion and Outlook

