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Classical Langevin dynamics and non-convex optimization

The Langevin dynamics was first introduced in statistical physics to
describe the motion of a particle with position X and velocity V in a
potential field ∇x f subject to damping and random collision.

Overdamped Langevin dynamics

dXt = −∇x f (Xt)dt + σdWt

Underdamped Langevin dynamics
dXt = Vtdt
dVt =

(
−∇x f (Xt)−γVt

)
dt+σdWt

Under mild conditions, the two Markov diffusions admits unique invariant
measures whose densities read:

Overdamped Langevin dynamics

m∗(x) = Ce−
2
σ2

f (x)

Underdamped Langevin dynamics

m∗(x , v)

In particular, f does NOT need to be convex.
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Relation with classical algorithms

If we overlook the Brownian noise, then
the overdamped process ⇒ gradient descent algorithm
the underdamped process ⇒ Hamiltonian gradient descent algorithm

But their convergence to the minimizer is ensured only for convex potential
function f .

Taking into account the Brownian noise with constant σ, we may produce
samplings of the invariant measures

the overdamped Langevin ⇔ MCMC
the underdamped Langevin ⇔ Hamiltonian MCMC

The convergence rate of MCMC algorithm is in general dimension
dependent !

One may diminish σ ↓ 0 along the simulation ⇒ Simulation annealing.
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Deep neural networks

The deep neural networks have won and continue gaining impressive
success in various applications. Mathematically speaking, we may
approximate a given function f with the parametrized function:

f (z) ≈ ϕn ◦ · · · ◦ ϕ1(z), where ϕi (z) :=

ni∑
k=1

c ikϕ(Ai
kz + bik)

and ϕ is a given non-constant, bounded, continuous activation function.
The expressiveness of the neural network is ensured by the universal
representation theorem. However, the efficiency of such over-parametrized,
non-convex optimization is still a mystery for mathematical analysis.

It is natural to study this problem using Mean-field Langevin equations.
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Two-layer Network and Mean-field Langevin Equation
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Two-layer Network and Mean-field Langevin Equation

Two-layer neural network

In the work with K. Hu, D. Siska, L. Szpruch ’19, we focused on the
two-layer network, and aimed at minimizing

inf
n,(ck ,Ak ,bk )

E
[∣∣f (Z )−

n∑
k=1

ckϕ(AkZ + bk)
∣∣2],

where Z represents the data and E is the expectation under the law of the
data.

Note that F is convex in ν. Take Ent(·), the relative entropy
w.r.t. Lebesgue measure, as a regularizer, and note that Ent(·) is strictly
convex.

How to characterize the minimizer of a function of probabilities ?
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Two-layer Network and Mean-field Langevin Equation

Derivatives of functions of probabilities

Let F : P(Rd)→ R. Denote its derivative by δF
δm : P(Rd)× Rd → R.

given m,m′, denote mλ := (1− λ)m + λm′ we have
F (mε)− F (m) =

∫ ε
0

∫
Rd

δF
δm

(
mλ, x

)
(m′ −m)(dx)dλ

e.g. (a) F (m) := Em[ϕ(X )], then δF
δm (m, x) = ϕ(x)

(b) F (m) := g
(
Em[ϕ(X )]

)
, then δF

δm (m, x) = ġ
(
Em[ϕ(X )]

)
ϕ(x)

If further assume F is convex, we have Therefore, a sufficient condition
for m being a minimizer would be
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(
Em[ϕ(X )]

)
ϕ(x)

If further assume F is convex, we have Therefore, a sufficient condition
for m being a minimizer would be

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 7 / 37



Two-layer Network and Mean-field Langevin Equation

Derivatives of functions of probabilities

Let F : P(Rd)→ R. Denote its derivative by δF
δm : P(Rd)× Rd → R.

given m,m′, denote mλ := (1− λ)m + λm′ we have
F (mε)− F (m) =

∫ ε
0

∫
Rd

δF
δm

(
mλ, x

)
(m′ −m)(dx)dλ

e.g. (a) F (m) := Em[ϕ(X )], then δF
δm (m, x) = ϕ(x)

(b) F (m) := g
(
Em[ϕ(X )]

)
, then δF

δm (m, x) = ġ
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Two-layer Network and Mean-field Langevin Equation

First order condition of minimizers

Under the presence of the entropy regularizer, we can also prove the first
order equation is a necessary condition for being minimizer.

Theorem (Hu, R., Siska, Szpruch, ’19)

Under mild conditions, if m∗ = argminm
{
F (m) + σ2

2 Ent(m)
}
, then

DmF (m∗, x) +
σ2

2
∇ lnm∗(x) = 0, for all x . (1)

Conversely, if F to be convex, (1) implies m∗ is the minimizer.

Note that the density of m∗ satisfies:

m∗(x) = Ce−
2
σ2

δF
δm

(m∗,x)
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Two-layer Network and Mean-field Langevin Equation

Link to Overdamped Mean-field Langevin equation

The first order equation has a clear link to a Fokker-Planck equation.

Theorem (Hu, R., Siska, Szpruch, ’19)

Under mild conditions, if m∗ = argminm
{
F (m) + σ2

2 Ent(m)
}
then m∗ is a

stationary solution to the Fokker-Planck equation

∂tm = ∇ ·
(
DmF (m, ·)m +

σ2

2
∇m

)
(2)

It is well-known that the equation (2) characterizes the marginal law of the
mean-field Langevin (MFL) dynamics:

dXt = −DmF (mt ,Xt)dt + σdWt , mt = Law(Xt)
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Two-layer Network and Mean-field Langevin Equation

Link to Underdamped Mean-field Langevin equation

Different from above, introduce the velocity variable V and consider the
minimization:

inf
m=Law(X ,V )

F (mX ) +
1
2
Em
[
|V |2

]
+
σ2

2γ
Ent(m)

The first order condition reads

DmF (mX , x) +
σ2

2γ
∇x lnm(x , v) = 0 and v +

σ2

2γ
∇v lnm(x , v) = 0.

One can again directly verify that the minimizer is an invariant measure of
the underdamped MFL equation:{

dXt = Vt ,

dVt = (−DmF (mX
t ,Xt)− γVt)dt + σdWt
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Two-layer Network and Mean-field Langevin Equation

Difficulties: invariant measure of MFL

For the mean-field diffusion, the existence and uniqueness of the invariant
measures is non-trivial, and the convergence of the marginal laws towards
the invariant measure, if exists, is one of the long-standing problems in
probability.

A simple example: mean-field Ornstein-Uhlenbeck process
dXt = (αE[Xt ]− Xt)dt + dWt

α < 1 =⇒ ∃ unique invariant measure
α > 1 =⇒ no invariant measure
α = 1 =⇒ ∃ multiple invariant measures

Given a convex F , the existence and uniqueness of the invariant measure of
MFL is due to that of the minimizer m∗, thanks to the first order condition.

It remains to study the convergence of the marginal laws to the invariant
measure.
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Two-layer Network and Mean-field Langevin Equation

Gradient flow and its analog

Define the energy functions for both overdamped and underdamped cases

U(m) = F (m) +
σ2

2
Ent(m), Û(m) = F (mX ) +

1
2
Em[|V |2] +

σ2

2γ
Ent(m)

For the convergence towards the invariant measure, it is crucial to observe

Theorem (Overdamped MFL, Hu, R., Siska, Szpruch, ’19)

dU(mt) = −E
[∣∣DmF (mt ,Xt) + σ2

2 ∇x lnmt(Xt)
∣∣2]dt for all t > 0

Theorem (Underdamped MFL, Kazeykina, R., Tan, Yang, ’20)

dÛ(mt) = −γE
[∣∣Vt + σ2

2γ∇v lnmt(Xt ,Vt)
∣∣2]dt for all t > 0

Due to the generalized Itô calculus and time-reversal of diffusions.
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Two-layer Network and Mean-field Langevin Equation

Convergence for convex F

Overdamped: dU(mt) = −E
[∣∣DmF (mt ,Xt) + σ2

2 ∇x lnmt(Xt)
∣∣2]dt.

Heuristically, U(mt) decreases till mt hits m∗ s.t.

DmF (m∗, x) +
σ2

2
∇x lnm∗(x) = 0

Underdamped: dÛ(mt) = −γE
[∣∣Vt + σ2

2γ∇v lnmt(Xt ,Vt)
∣∣2]dt

Similarly, Û(mt) shall decrease till mt hits m∗ s.t.

v +
σ2

2γ
∇v lnm∗(x , v) = 0
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Two-layer Network and Mean-field Langevin Equation

A bit more rigorously...

The intuition above can be materialized by the LaSalle’s invariance
principle and the functional inequalities. Define the set of cluster points

w(m0) := {m : ∃(mtn)n∈N s.t. lim
n→∞

W1(mtn ,m) = 0}

Invariance Principle says:

Law(X0) ∈ w(m0) =⇒ Law(Xt) ∈ w(m0) for all t > 0

We can prove that
Overdamped: m∗ ∈ w(m0) =⇒
Underdamped: m∗ ∈ w(m0) =⇒
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Two-layer Network and Mean-field Langevin Equation

Complete the proof for Underdamped MFL

Recall that

m∗ ∈ w(m0) =⇒ v +
σ2

2γ
∇v lnm∗(x , v) = 0 =⇒ m∗(x , v) = g(x)e−

γ

σ2
v2

Consider any smooth function h with compact support. Let
Law(X0) ∈ w(m0).

By Itô’s formula,
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Consider any smooth function h with compact support. Let
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ḣ(Xt)− h(Xt)DmF (mX

t ,Xt)
]

= E
[
h(Xt)

(
− σ2

2γ
∇x lnmt(Xt ,Vt)− DmF (mX

t ,Xt)
)]

⇒ σ2

2γ
∇x lnmt(Xt ,Vt) + DmF (mX

t ,Xt) = 0

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 15 / 37



Two-layer Network and Mean-field Langevin Equation

Complete the proof for Underdamped MFL

Recall that

m∗ ∈ w(m0) =⇒ v +
σ2

2γ
∇v lnm∗(x , v) = 0 =⇒ m∗(x , v) = g(x)e−

γ

σ2
v2

Consider any smooth function h with compact support. Let
Law(X0) ∈ w(m0). By Itô’s formula,

0 = E
[σ2

2γ
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Two-layer Network and Mean-field Langevin Equation

Convergence rate for special case

For possibly non-convex F such that DmF (m, x) bearing small mean-field
dependence, we can prove the contraction results using
synchronous-reflection couplings.

Theorem (Overdamped MFL, Hu, R., Siska, Szpruch, ’19)

W1(mt ,m
′
t) ≤ Ce−λtW1(m0,m

′
0).

Theorem (Underdamped MFL, Kazeykina, R., Tan, Yang, ’20)

Wψ(mt ,m
′
t) ≤ Ce−λtWψ(m0,m

′
0), with the semi-metric

Wψ(m,m′) = inf{
∫
ψ
(
(x , v), (x ′, v ′)

)
π(dx , dy) : π is a coupling of m,m′}

Regretfully, the small mean-field dependence assumption is corresponding
to the over-regularized problem in the context of neural networks.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 16 / 37



Two-layer Network and Mean-field Langevin Equation

Convergence rate for special case

For possibly non-convex F such that DmF (m, x) bearing small mean-field
dependence, we can prove the contraction results using
synchronous-reflection couplings.

Theorem (Overdamped MFL, Hu, R., Siska, Szpruch, ’19)

W1(mt ,m
′
t) ≤ Ce−λtW1(m0,m

′
0).

Theorem (Underdamped MFL, Kazeykina, R., Tan, Yang, ’20)

Wψ(mt ,m
′
t) ≤ Ce−λtWψ(m0,m

′
0), with the semi-metric

Wψ(m,m′) = inf{
∫
ψ
(
(x , v), (x ′, v ′)

)
π(dx , dy) : π is a coupling of m,m′}

Regretfully, the small mean-field dependence assumption is corresponding
to the over-regularized problem in the context of neural networks.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 16 / 37



Application to GAN

Table of Contents

1 Two-layer Network and Mean-field Langevin Equation

2 Application to GAN

3 Deep neural network and MFL system

4 Game on random environment

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 17 / 37



Application to GAN

GAN and zero-sum game

The Generative Adversary Network aims at sampling a target a probability
measure µ̂ ∈ P(Rn1) only empirically known.

Taking Wasserstein distance
as example, we aim at sampling µ̂ by

where E =
{
z 7→ Em

[
ϕ(X , z)

]
: X ∼ m ∈ P(Rn2)

}
GAN can be viewed

as a zero-sum game between the generator and the discriminator:{
Gen. : inf

µ∈P(Rn1 )

∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(µ)− Ent(m)

)
Discr. : inf

m∈P(Rn2 )
−
∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(m)− Ent(µ)

)
In particular, µ,m 7→ F (µ,m) :=

∫
Em[ϕ(X , z)](µ− µ̂)(dz) are linear.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 18 / 37



Application to GAN

GAN and zero-sum game

The Generative Adversary Network aims at sampling a target a probability
measure µ̂ ∈ P(Rn1) only empirically known. Taking Wasserstein distance
as example, we aim at sampling µ̂ by

min
µ
W1(µ, µ̂)

where E =
{
z 7→ Em

[
ϕ(X , z)

]
: X ∼ m ∈ P(Rn2)

}
GAN can be viewed

as a zero-sum game between the generator and the discriminator:{
Gen. : inf

µ∈P(Rn1 )

∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(µ)− Ent(m)

)
Discr. : inf

m∈P(Rn2 )
−
∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(m)− Ent(µ)

)
In particular, µ,m 7→ F (µ,m) :=

∫
Em[ϕ(X , z)](µ− µ̂)(dz) are linear.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 18 / 37



Application to GAN

GAN and zero-sum game

The Generative Adversary Network aims at sampling a target a probability
measure µ̂ ∈ P(Rn1) only empirically known. Taking Wasserstein distance
as example, we aim at sampling µ̂ by

min
µ
W1(µ, µ̂)

= min
µ

sup
f ∈Lip1

∫
f (x)(µ− µ̂)(dx)

where E =
{
z 7→ Em

[
ϕ(X , z)

]
: X ∼ m ∈ P(Rn2)

}
GAN can be viewed

as a zero-sum game between the generator and the discriminator:{
Gen. : inf

µ∈P(Rn1 )

∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(µ)− Ent(m)

)
Discr. : inf

m∈P(Rn2 )
−
∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(m)− Ent(µ)

)
In particular, µ,m 7→ F (µ,m) :=

∫
Em[ϕ(X , z)](µ− µ̂)(dz) are linear.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 18 / 37



Application to GAN

GAN and zero-sum game

The Generative Adversary Network aims at sampling a target a probability
measure µ̂ ∈ P(Rn1) only empirically known. Taking Wasserstein distance
as example, we aim at sampling µ̂ by

min
µ
W1(µ, µ̂)

= min
µ

sup
f ∈Lip1

∫
f (x)(µ− µ̂)(dx)

≈ min
µ

sup
f ∈E

∫
f (x)(µ− µ̂)(dx)

where E =
{
z 7→ Em

[
ϕ(X , z)

]
: X ∼ m ∈ P(Rn2)

}

GAN can be viewed
as a zero-sum game between the generator and the discriminator:{

Gen. : inf
µ∈P(Rn1 )

∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(µ)− Ent(m)

)
Discr. : inf

m∈P(Rn2 )
−
∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(m)− Ent(µ)

)
In particular, µ,m 7→ F (µ,m) :=

∫
Em[ϕ(X , z)](µ− µ̂)(dz) are linear.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 18 / 37



Application to GAN

GAN and zero-sum game

The Generative Adversary Network aims at sampling a target a probability
measure µ̂ ∈ P(Rn1) only empirically known. Taking Wasserstein distance
as example, we aim at sampling µ̂ by

min
µ

sup
f ∈E

∫
f (x)(µ− µ̂)(dx)

where E =
{
z 7→ Em

[
ϕ(X , z)

]
: X ∼ m ∈ P(Rn2)

}

GAN can be viewed
as a zero-sum game between the generator and the discriminator:{

Gen. : inf
µ∈P(Rn1 )

∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(µ)− Ent(m)

)
Discr. : inf

m∈P(Rn2 )
−
∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(m)− Ent(µ)

)
In particular, µ,m 7→ F (µ,m) :=

∫
Em[ϕ(X , z)](µ− µ̂)(dz) are linear.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 18 / 37



Application to GAN

GAN and zero-sum game

The Generative Adversary Network aims at sampling a target a probability
measure µ̂ ∈ P(Rn1) only empirically known. Taking Wasserstein distance
as example, we aim at sampling µ̂ by

min
µ

sup
f ∈E

∫
f (x)(µ− µ̂)(dx)

where E =
{
z 7→ Em

[
ϕ(X , z)

]
: X ∼ m ∈ P(Rn2)

}
GAN can be viewed

as a zero-sum game between the generator and the discriminator:{
Gen. : inf

µ∈P(Rn1 )

∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(µ)− Ent(m)

)
Discr. : inf

m∈P(Rn2 )
−
∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(m)− Ent(µ)

)

In particular, µ,m 7→ F (µ,m) :=
∫
Em[ϕ(X , z)](µ− µ̂)(dz) are linear.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 18 / 37



Application to GAN

GAN and zero-sum game

The Generative Adversary Network aims at sampling a target a probability
measure µ̂ ∈ P(Rn1) only empirically known. Taking Wasserstein distance
as example, we aim at sampling µ̂ by

min
µ

sup
f ∈E

∫
f (x)(µ− µ̂)(dx)

where E =
{
z 7→ Em

[
ϕ(X , z)

]
: X ∼ m ∈ P(Rn2)

}
GAN can be viewed

as a zero-sum game between the generator and the discriminator:{
Gen. : inf

µ∈P(Rn1 )

∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(µ)− Ent(m)

)
Discr. : inf

m∈P(Rn2 )
−
∫
Em[ϕ(X , z)](µ− µ̂)(dz) + σ2

2

(
Ent(m)− Ent(µ)

)
In particular, µ,m 7→ F (µ,m) :=

∫
Em[ϕ(X , z)](µ− µ̂)(dz) are linear.

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 18 / 37



Application to GAN

The feedback of the generator

Due to the linearity, the solution to the generator given m (choice of
discriminator) is explicit:

µ∗[m](z) = C (m)−1e−
2
σ2

(
Em[ϕ(X ,z)]

)
,

where C (m) is the normalization constant.

Therefore the value of the
game can be rewritten as

min
m

max
µ
−F (µ,m) +

σ2

2
(
Ent(m)− Ent(µ)

)
= min

m
G (m) +

σ2

2
Ent(m)

where G (m) := −F (µ∗[m],m)− σ2

2
Ent(µ∗[m]) is convex
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Application to GAN

A convergent algorithm

Therefore the choice of the discriminator at the equilibrium is the invariant
measure of the MFL dynamics:

dXt = −DmG (mt ,Xt)dt + σdWt

and the intrinsic derivative can be computed explicitly: Recall
C (m) =

∫
e−

2
σ2

Em[ϕ(X ,z)]dz , and thus Finally note that µ∗[m] can be
sampled by MCMC.
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Application to GAN

A toy example

Here we sample the law µ̂ = exp(1) with µ0 = N (0, 1).

Figure: Pontential function value Figure: Histogram
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Application to GAN

Toy example with underdamped MFL

Similarly, we can train the discriminator by the underdamped MFL
dynamics. {

dXt = Vt

dVt =
(
− DmG (mX

t ,Xt)− γVt

)
dt + σdWt

Figure: Energy value Figure: Histogram
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Deep neural network and MFL system
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Deep neural network and MFL system

Optimization on random environment/with marginal
constraint

More recently, with G. Conforti and A. Kazeykina, we discover that the
previous analysis can be generalized to the optimization on random
environment.

Consider the optimization over π ∈ P(Rd × Y):

min
π: πY=m

F (π) +
σ2

2
Ent(π|Leb×m)

where m is a fixed law on the environment Y (Polish).

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 24 / 37



Deep neural network and MFL system

Optimization on random environment/with marginal
constraint

More recently, with G. Conforti and A. Kazeykina, we discover that the
previous analysis can be generalized to the optimization on random
environment. Consider the optimization over π ∈ P(Rd × Y):

min
π: πY=m

F (π) +
σ2

2
Ent(π|Leb×m)

where m is a fixed law on the environment Y (Polish).

Zhenjie Ren (CEREMADE) MF Langevin 28/08/2020 24 / 37



Deep neural network and MFL system

First order condition

It is crucial to observe : for F convex we have

F (π′)− F (π) ≥
∫
Rd

δF

δm

(
π, x , y

)
(π′ − π)(dx , dy)dλ

Since πY = π′Y = m, a sufficient condition for m to be a minimizer is:

Theorem (Conforti, Kazeykina, R., ’20)

Under mild conditions, if π∗ ∈ argminπY=m
{
F (π) + σ2

2 Ent(π|Leb×m)
}

and let π∗(dx , dy) = π∗(x |y)dxm(dy), then

∇x
δF

δm
(π∗, x , y) +

σ2

2
∇x lnπ∗(x |y) = 0, for all x , m-a.s. y. (3)

Conversely, if F to be convex, (3) implies m∗ is the minimizer.
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Deep neural network and MFL system

Minimizer and invariant measure of MFL system

Due to the first order condition, the minimizer of V σ is closely related to
the invariant measure of the overdamped MFL system:

dXt = −∇x
δF

δm
(πt ,Xt ,Y ) + σdWt , πt = Law(Xt ,Y )

In particular, we know
if F is convex, π∗ = argminπY=m V σ(π) iff π∗ is the invariant measure
for general F , if MFL system has unique invariant measure π∗, then
π∗ = argminπY=m V σ(π)

Theorem (Conforti, Kazeykina, R., ’20)

Under mild conditions, the MFL system admits unique strong solution and

dV σ(πt) = −E
[∣∣∇x

δF

δm
(πt ,Xt ,Y ) +∇x lnπt(Xt |Y )

∣∣2]dt, for t > 0
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dX y
t = −∇x

δF

δm
(πt ,X

y
t , y) + σdWt , πt = Law(Xt ,Y )

In particular, we know
if F is convex, π∗ = argminπY=m V σ(π) iff π∗ is the invariant measure
for general F , if MFL system has unique invariant measure π∗, then
π∗ = argminπY=m V σ(π)

Theorem (Conforti, Kazeykina, R., ’20)
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Deep neural network and MFL system

Convergence towards the invariant measure

• In case F convex, the V σ again serves as Lyapunov function for the
dynamic system (mt). Provided that Y is countable or Rn, we can show πt
converges to π∗ in W2 based on Lasalle’s invariant principle.

• For possibly non-convex but with small MF-dependence F , we can
prove the contraction result:

Theorem (Conforti, Kazeykina, R., ’20)

Under particular conditions, we have

W1(πt , π
′
t) ≤ Ce−γtW1(π0, π

′
0),

where W1(π, π′) =

∫
W1
(
π(·|y), π′(·|y)

)
m(dy)

The constant γ can be computed, and once γ > 0 the MFL has a unique
invariant measure, equal to the minimizer of V σ, towards which the
marginal laws converge.
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Deep neural network and MFL system

Important example: Optimal control

Let Y = [0,T ] and m = Leb[0,T ]. Consider the relaxed optimal control

inf
πY=m

∫ T

0

∫
L(y,Sy, x)π(x |y)dy + g(ST ) +

σ2

2
Ent(π|Leb),

where Sy = S0 +

∫ y

0

∫
ϕ(u, Su, x)π(x |u)du

Define the Hamiltonian function H(y, s, x , p) = L(y, s, x) + p · ϕ(y, s, x).

We may compute δF
δm (π, x , y) = H(y ,Sy, x ,Py), where

Py = ∇sg(ST ) +

∫ T

y

∫
∇sH(u, Su, x ,Pu)π(x |u)du

The paper with K. Hu and A. Kazeykina, ’19 was devoted to this example
and connect it to the deep neural network.
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Deep neural network and MFL system

Deep neural network associated to relaxed controlled process

The Euler scheme introduces a forward propagation of a neural network:
Sti+1 ≈ Sti + δt

nti+1

∑nti+1
j=1 ϕ(ti , Sti ,X

j
ti+1 ,Z ), where Z is the data.

Z S0

X 1
t1

X 2
t1

X 3
t1

X
nt1
t1

St1

X 1
t2

X 2
t2

X 3
t2

X
nt2
t2

St2 StN−1

X 1
tN

X 2
tN

X 3
tN

X
ntN
tN

ST

Input Layer t1 Layer t2 Layer tN Output

Figure: Neural network corresponding to the relaxed controlled process
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Deep neural network and MFL system

Mean-field Langevin system ≈ Backward propagation

The architecture of the network is characterized by the average pooling
after each layer!

The gradients of the parameters are easy to compute, due to the chain rule
(or backward propagation): (δWsj ) are independent copies of N (0, δs).
Clearly, it is a discretization of the MF Langevin system.
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X y
sj+1

= X y
sj
− δsE

[
∇aH(y,Sy

sj
,X y

sj
,Py

sj
,Z )
]
+σδWsj , with δs = sj+1 − sj ,

where P
yi−1
s = Pyi

s − δy
nyi+1∑
j=1

∇sH
(
yi , Syi

s ,X
yi ,j
s ,Pyi

s ,Z
)
, PT

s = ∇sg(ST
s ,Z ),
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Game on random environment

Nash equilibirum

Consider the game in which the i-th player chooses the probability measure
πi on Rni × Y as strategy to minimize his objective function F i (πi , π−i ),
where π−i is the joint strategy of other players on

∏
j 6=i Rnj × Y. We urge

that the marginal law of πi on Y is equal to the fixed law m ∈ P(Y).

π∗ is Nash eq: π∗,i ∈ arg min
πi : πi

y=m
F i (πi , π∗,−i ) +

σ2

2
Ent(πi |Leb×m), ∀i

Due to the previous first order condition we have

Theorem (Conforti, Kazeykina, R., ’20)

If π is a Nash equilibrium, we have for i = 1, · · · , n,

∇x i
δF i

δν
(πi , π−i , x i , y) +

σ2

2
∇x i ln

(
πi (x i |y)

)
= 0 ∀x i ∈ Rni , m-a.s. y ∈ Y.
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Game on random environment

Uniqueness: Monotonicity condition

Theorem (Conforti, Kazeykina, R., ’20)

Denote x̄ = (x , y). The functions (F i )i=1,··· ,n satisfy the monotonicity
condition, if for π, π′ we have

n∑
i=1

∫ (
δF i

δν
(πi , π−i , x̄ i )− δF i

δν
(π′i , π′−i , x̄ i )

)
(π − π′)(dx̄) ≥ 0.

We have the following results:
(i) if n = 1, a function F satisfies the monotonicity condition iff it is

convex.
(ii) in general (n ≥ 1), if (F i )i=1,··· ,n satisfy the monotonicity condition,

then for any two Nash equilibria π∗, π′∗ ∈ Π we have (π∗)i = (π′∗)i

for all i = 1, · · · , n.
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Game on random environment

Proof of uniqueness

Sketch of proof: Since (F i ) is monotone,

n∑
i=1

∫ (
δF i

δν
(πi , π−i , x̄ i )− δF i

δν
(π′i , π′−i , x̄ i )

)
(π − π′)(dx̄) ≥ 0.

Together with the first order condition of equilibrium, we obtain
Therefore πi = π′i for all i .
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−
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(
Ent

(
πi |π′i

)
+ Ent
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Game on random environment

Mean-field Langevin system and convergence to equilibrium

Again the FOC inspires the form of MFL dynamics:

dX i ,y
t = ∇x i

δF i

δν
(πit , π

−i
t ,X i ,y

t , y)dt + σdW i
t

In particular, if the game admits at least one Nash equilibrium and the
MFL system has a unique invariant measure, then the invariant measure is
an equilibrium.

In the context of game, in general it is hard to find Lyapunov function.

If the coefficient ∇x i
δF i

δν (πi , π−i , x i , y) bears small mean-field
dependence, we still can prove the contraction result, namely,

W1(πt , π
′
t) ≤ Ce−γtW1(π0, π

′
0)
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Game on random environment

Conclusion

References: One layer: Mei, Montanari, Nguyen ’18, Hu, R., Siska,
Szpruch ’19; Deep/Neuron ODE: Hu, R., Kazeykina, ’19, Jabir, Siska,
Szpruch ’19; Game on random environment: Conforti, R., Kazeykina,
’20; Stochastic control: Siska, Szpruch, ’20; Underdamped MFL:
Kazeykina, R., Tan, Yang, ’20 ...

Mean-field Langevin dynamics is a natural model to analyze the
(Hamiltonian) gradient descent for the overparametrized nonconvex
optimization
The calculus involving the measure derivatives characterizes the first
order conditions, as well as allows the Itô-type calculus
The relaxed control (continuous time or discrete time) can be viewed
as an optimization with marginal constraint.
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Thank you for your attention!
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