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Four major methods of scientific research
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Four major methods of scientific research
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Computational Science ‘ Data Science ‘
Question:
Is “Data Science” really a science?



A basic Al problem: classification

@ Can a machine (function) tell the difference ?
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Supervised learning

@ Function interpolation (data fitting)
» Each image = a big vector of pixel values
* d = 1280 x 720 x 3 (widthx height x RGB channel) ~ 3M.
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How to formulate “learning”?
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@ Data: {x;, yi} 7,
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How to formulate “learning”?

@ Data: {x;, yi} 7,
@ Find f* in some function class such that f*(x;) = y;.

Jinchao Xu Math of NN CUHK 6/59



How to formulate “learning”?

@ Data: {x;, yi} 7,
Find f* in some function class such that *(x;) ~ y;.

@ Mathematically: solve the optimization problem by parameterizing the abstract function
class

min L(x,y,©) (1)

where N
,
L(x, ¥, 0) = E(x,y)~p[L(f(X: ©), ¥)] = ¥ ST @) — yill?
i=1

> Or combine the feature map f with the logistic regression model to obtain cross-entropy loss function.
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Deep Learning

Machine learning using a special function class:
deep neural networks!
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Deep learning and its great successes

CNN has been successfully used in:

@ Computer vision
» Classification, detection, segmentation...
> Medical image processing,
> Face recognition,

@ Reinforcement learning

> AlphaGo,
> Automated driving,

@ Natural language processing *f‘j“‘fﬁ‘“ i i {
> Speech recognition, it i P N
» Machine translation, ¢ b i e \@ )

ALLSYSTEMS 60
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Deep Concern

Quotes(Researchers from U Wash, Princeton, MIT, .. .)
@ “Deep learning is killing image processing, natural language processing...”
@ ‘“Graduate students only work on deep learning”

@ “One time extinction event — graduate students won’t know the fundamental tools”

Intelligent Machines
The Dark Secret at the Heart of Al

o " aem
Deep,Deep Trouble Noonerealyknows how the most advanced algoritms do
esplamilngecs g Poasog et sd ey what theydo. That couldbe aproblen., Are Al And Machine Learning Killing

Analytics As We Know It?

by Wil Knight  April 1, 2017 oo

Source: D. Donoho/ H. Monajemi/ V. Papyan “Stats 38" at Stanford and B. Dong at PKU
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Mathematical understanding and Analysis?

Question:
Why and how do these neural network machine learning models and relevant algo-
rithms work?
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Mathematical understanding and Analysis?

Question:
Why and how do these neural network machine learning models and relevant algo-
rithms work?

This series of talks:

o Finite Element and Deep Neural Network

» ReLU neural networks = linear finite elements
> Largest function class that a stable neural network can approximate
> Optimal approximation rates for popular neural networks

©@ Multigrid and Image Classification

> Linear separable sets and logistic regression
»> A model for feature extractions
> Image classification by multigrid method

© Neural Network and Numerical PDEs

> Error analysis of neural network for numerical PDEs
> Numerical quadrature and Rademacher complexity analysis
> Training algorithm that achieves the best asymptotic convergence rate
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@ Finite Element and Neural Networks
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Recall: supervised learning

@ Mathematical problem: Find f(-; ©) : RY — RS such that:
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Recall: supervised learning

@ Mathematical problem: Find f(-; ©) : RY — RS such that:

1 0 , 0
fEH o) ~ (o) (8 o) ~ (1) N, o) ~ (o)
0 0 1

@ Image classification:

.@ (02) :}.—cat'

Question:
What is a good function class for f?
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What is a good function class for f?

Most favorable function class:
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Jinchao Xu Math of NN CUHK 13/59



What is a good function class for f?

Most favorable function class:
@ Polynomials!

(e « (e}
E Ao Xy ' Xy 2 - X5
ajtap+...+ag<n

Important property:

Jinchao Xu Math of NN CUHK 13/59



What is a good function class for f?

Most favorable function class:
@ Polynomials!

(e « (e}
E Ao Xy ' Xy 2 - X5
ajtap+...+ag<n

Important property: polynomials can approximate any reasonable function!

Jinchao Xu Math of NN CUHK 13/59



What is a good function class for f?

Most favorable function class:
@ Polynomials!

« « fa%
E Ao Xy ' Xy 2 - X5
ajtap+...+ag<n

Important property: polynomials can approximate any reasonable function!
@ dense in C(Q2) [Weierstrass theorem]

Jinchao Xu Math of NN CUHK 13/59



What is a good function class for f?

Most favorable function class:
@ Polynomials!

« « fa%
E Ao Xy ' Xy 2 - X5
ajtap+...+ag<n

Important property: polynomials can approximate any reasonable function!
@ dense in C(Q2) [Weierstrass theorem]
@ dense in all Sobolev spaces: L?(Q), W™P(Q), ...

Jinchao Xu Math of NN CUHK 13/59



What is a good function class for f?

Most favorable function class:

@ Polynomials!

Z anX{ X% x3?
attagt...fag<n

Important property: polynomials can approximate any reasonable function!

@ dense in C(Q2) [Weierstrass theorem]

@ dense in all Sobolev spaces: L?(Q), W™P(Q), ...
Curse of dimensionality: Number of coefficients for polynomials of degrees nin RY:

N= (d:n) - (ndJ!rnC!i)!

Jinchao Xu Math of NN CUHK 13/59



What is a good function class for f?

Most favorable function class:

@ Polynomials!

Z anX{ X% x3?
attagt...fag<n

Important property: polynomials can approximate any reasonable function!

@ dense in C(Q2) [Weierstrass theorem]

@ dense in all Sobolev spaces: L?(Q), W™P(Q), ...
Curse of dimensionality: Number of coefficients for polynomials of degrees nin RY:

N= (d:n) - (ndJ!rnC!i)!

Jinchao Xu Math of NN CUHK 13/59



What is a good function class for f?

Most favorable function class:

@ Polynomials!

Z anX{ X% x3?
attagt...fag<n

Important property: polynomials can approximate any reasonable function!

@ dense in C(Q2) [Weierstrass theorem]

@ dense in all Sobolev spaces: L?(Q), W™P(Q), ...
Curse of dimensionality: Number of coefficients for polynomials of degrees nin RY:

N= (d:n) - (ndJ!rnC!i)!

For example n = 100:

N= [ 5x10° | 46 x10° | 3.5 x 10"
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0 Introduction
@ Finite Element and Neural Networks

@ Neural Network Functions

© Neural Network Approximation Class
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o-DNN: Linears, activation and composition
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o-DNN: Linears, activation and composition

o Start from a linear function
WOx + b0

e Compose with the activation function:
1) = a(Wox + bo)

e Compose with another linear function:
wix™ 4 p!

° Compose with the activation function:
x® = o' x() 4 p'y

e Compose with another linear function
f(x; ©) = W2x® 4 p?

o .

Deep neural network functions with ¢-hidden layers

yo

Ni:e

= {W'x©) L bt W e R", bj € R}
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A popular activation function

Ramp or ReLU function
o = ReLU(x) = max(0, x)
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A popular activation function

Ramp or ReLU function
o = ReLU(x) = max(0, x)

Notation: . .
_ sReLU
Z"wz - z'71:z .

Jinchao Xu Math of NN CUHK 16/59



What does a function in £}, look like?

Obviously:

21

n,., = a space of continuous piecewise linear functions!["]

11 Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3
(2020), pp. 502-527.
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What does a function in £}, look like?

Obviously:

21

N

= a space of continuous piecewise linear functions!!']

AT

Y <

(10,10) (20,20)

M Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3
(2020), pp. 502-527.
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compared with (adaptive) linear FEM?

1
M:e

How is ¥

Figure: Adaptive Grid
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Figure: (40
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@ Introduction

@ Finite Element and Neural Networks

@ Connection of ReLU DNN and linear FEM

© Neural Network Approximation Class
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Finite element: piecewise linear functions
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Finite element: piecewise linear functions

@ Uniform grid 7p

/ .
0 = X =1, i=——— (=0:N+1).
0 < X3 < < XN+1 Xj N+1(j +1)
Xo Xj XN+1
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J
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Finite element: piecewise linear functions
@ Uniform grid 7p

J :
= =1 i=———((=0:N+1).
0=xp < x4 < < XN+1 , X N1 1 U F )
Xo Xj XN+1

@ Linear finite element space

Vy = {V : vis continuous and piecewise linear w.r.t. 7 }

Vh(X) = > V(X)) $i(X).
i=1

Jinchao Xu Math of NN CUHK 20/59



Linear finite element in multi-dimensions

wix + b WiX1 + WoXo + b WiX1 + WoXo + WXz + b

- A B

Xo X XN+t
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FEM basis function in 1D

1

@ Denote the basis function in 75 *

06

2x x € [0, %] 04

1 02
p(x)=92(1-x) xe€[}1]. @) I
0, others o 02 04 05 08 1
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FEM basis function in 1D

@ Denote the basis function in 75

2x x €0, 3]
p(x)=32(1-x) xe[31]. @) / |
0, others o 02 04 05 08 1

@ All basis functions ¢; can be written as

X — Xj—1 /
pi = W(Th’) = p(WhX + b;). @)

with wy, = ., by = =1,
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FEM basis function in 1D

1
@ Denote the basis function in 75 *

06

04

2x x €[0,3] "l
p(x)=32(1-x) xe[31]. @) % |
0, others o 02 04 05 08 1

@ All basis functions ¢; can be written as

wiIW(%)Iw(WhX-Fbi)- (3)

with wy, = ., by = =1,

@ Let xy = max(0, x) = ReLU(x),

o(x) =2x1 —4(x —1/2)1 +2(x — 1)+

@ o; € span {(wx + b)+,w,b e R}
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FEM — ! (d = 1)

@ FEM — X! ( make wj, and b; arbitrary)
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FEM — ! (d = 1)

@ FEM — X! ( make wj, and b; arbitrary)

n
FEM C {Z aj(wix + bj)+, aj, wj, bj € R! } = Z;,,

=1
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FEM — ! (d = 1)

@ FEM — X! ( make wj, and b; arbitrary)

n
FEM C {Z aj(wix + bj)+, aj, wj, bj € R! } = Z;,,

=1

¥ ! is one hidden layer “shallow” neural network with activation function ReLU, n neurons.
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Generalization to multi-dimension:

Higher dimension d > 1
n
= {Zai(mx+bi)+ : w,-eR‘Xd,b,-e]R} 4)
i=1

d
where wjx = E Wi X;.
J=

Jinchao Xu Math of NN CUHK 24/59



Connection of ReLU-DNN and Linear FEM

Qd=1,

1
FE C £},

[ juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3
(2020), pp. 502-527.

Bl Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint arXiv:1611.01491
(2016).
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Qd=1,

1
FE C £},

Q o >2
FE¢ ¥!, Vvn>1.
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Connection of ReLU-DNN and Linear FEM

Qd=1,

1
FE C T},

Q o >2
FE¢ ¥!, Vvn>1.

e d > 28l
FEC X forsome¢> 1,

where T, is ReLU-DNN with £ layers.

[ juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3

(2020), pp. 502-527.

Bl Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint arXiv:1611.01491

(2016).
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A 2D example: FE basis function
Consider a 2D FE basis function, ¢(x):

X2

X1

X3

X4

M Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3

(2020), pp. 502-527.

81 Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint arXiv:1611.01491

(2016).
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A 2D example: FE basis function
Consider a 2D FE basis function, ¢(x):

X2

X1

Here g; is linear in Domain i, and x7 = X1, satisfying
gix)=1 gi(x)=0 gi(x}1)=0

o0 = {g,-(x), x € Domain |

0. X € R? — X{XoX3X3 X5 X,
1 X2 X3X4X5Xe

X3

X4

M Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3

(2020), pp. 502-527.

81 Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint arXiv:1611.01491

(2016).
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A 2D example: FE basis function
Consider a 2D FE basis function, ¢(x):

X2

X1

Here g; is linear in Domain i, and x7 = X1, satisfying
gix)=1 gi(x)=0 gi(x}1)=0
gi(x), x € Domain i
B(x) = { g
0. Xx € R® — X1 XoX3 X4 X5Xg

We havell[®]
pex)

M-

X3

X4

(5)

(6)

M Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of Computational Mathematics 38.3

(2020), pp. 502-527.

81 Raman Arora et al. “Understanding deep neural networks with rectified linear units”. In: arXiv preprint arXiv:1611.01491

(2016).
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Properties of ReLU

We can write the basis function ¢(x) defined on hexagon X1 X2 X3 X4 X5Xg Which is satisfied that
important identities:
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Properties of ReLU

We can write the basis function ¢(x) defined on hexagon X1 X2 X3 X4 X5Xg Which is satisfied that
important identities:

X = ReLU(x) — ReLU(—x), |x| = ReLU(x) + ReLU(—x)

and
athb |a—b
2 2

min(a, b) = = v-ReLU(W -[a,b]T) @)

where

v=—-[1,-1,—-1,-1] W = 1 _1

-1 1
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Example of DNN and FEM: 2D-FEM basis function

min(a, b, ¢) = min(min(a, b), ¢)
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min(a, b, ¢) = min(min(a, b), ¢)

= v-RelLU (W- (’"i”(ca’ b)))

—v-rew (W (GRS RTD))

ket (- (RO 8T )
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Example of DNN and FEM: 2D-FEM basis function

min(a, b, ¢) = min(min(a, b), ¢)

= v-RelLU (W- (’"i”(a’ b)))

(v ReLU(W - [a, b]T)))

=V RelU ReLU(c) — ReLU(—c)

(w
= v -ReLU ( ([1 V_:z]enge(LVI'j([Ea—b}PC)))
(e

= v-ReLU (Ws - ReLU(W, - [a, b, ] ))
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Example of DNN and FEM: 2D-FEM basis function

min(a, b, ¢) = min(min(a, b), ¢)

= v-RelLU (W- (’"i”(ca’ b)))

‘ ( v-ReLU(W -[a,b]T) ))
ReLU(c) — ReLU(—c)

(w
ol <W~ ([ v -ReLU(W - [a,b]") ))
(v

= v - ReLU

1, —1] - ReLU([1,—1]"¢)

= v-ReLU (Ws - ReLU(W, - [a, b, c]T))
where

1 1 1 1 . L v

2 —2 —2 —=2 1 - -1 -1 0

-3 3 3 T 1 -1 0

We=1| ¢ & 2 2 . Wi=14 1 o
I R LR 0 0 1

2 2 2 2 0 0 —1
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Example of DNN and FEM: 2D-FEM basis function

It follows that

g =min(g1, 92, 93, 94, 95, gs) = min(min(gs, g, g3), min(ga, g5, Js))
min(gy, g2, g3)
min(g4, g5, J6)

v - ReLU(W, - ReLU(W; - [91, 02, 95] ") )
V- ReLU(W, - ReLU(W; - [g4, g5, 36]T)

=v - ReLU(W - [

=v-ReLU(W - {
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Example of DNN and FEM: 2D-FEM basis function

It follows that

g =min(g1, 92, 93, 94, 95, gs) = min(min(gs, g, g3), min(ga, g5, Js))
min(gy, g2, g3)
min(g4, g5, J6)

v - ReLU(W; - ReLU(W; - [91, g2, 93]T)})
V- ReLU(W, - ReLU(W; - [g4, g5, 36]T)

=v - ReLU(W - [
=v-ReLU(W - {

Thus

B . [V ReLU(W, - ReLU(W, - [g1, 02, 93] T)
=Kl (V RCLU(W {v *ReLU(W; - ReLU(W, - [gs, s, 06]7)
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Example of DNN and FEM: 2D-FEM basis function

It follows that

g =min(g1, 92, 93, 94, 95, gs) = min(min(gs, g, g3), min(ga, g5, Js))
min(gy, g2, g3)
min(g4, g5, J6)

v - ReLU(W; - ReLU(W; - [91, g2, 93]T)})
V- ReLU(W, - ReLU(W; - [g4, g5, 36]T)

=v - ReLU(W - [
=v-ReLU(W - {

Thus

B ' [v-ReLU(W, - ReLU(W; - [91, g2, 95] ) 1
¢ = ReLU (v ReLU(W {V ReLU(W: - ReLU(W: - [0 o6 1) €Xh,-

Jinchao Xu Math of NN CUHK 29/59



ReLU-DNN and Linear FEM for H'

ReLU-DNN = 1!

M.e
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ReLU-DNN and Linear FEM for H'

ReLU-DNN =¥}, = Linear FEM C H'(Q)
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© Neural Network Approximation Class
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@ Introduction

@ Finite Element and Neural Networks

© Neural Network Approximation Class
@ Density of Shallow Neural Network
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Shallow Neural Networks
@ Superpositions of ridge functions

n
= {Z ao(wi-x+b), 3 €R, w; €RY, bj € R}

i=1
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Shallow Neural Networks
@ Superpositions of ridge functions

n
ZZ = {Z a,'O'(w,' - X+ b,'), g € R, wj € Rd, b; € R}

i=1

@ Shallow networks means one hidden layer, i.e.

f=U= (8)
n=1
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Shallow Neural Networks
@ Superpositions of ridge functions

n
ZZ = {Za,-o(w,- -X+b,'), g € R, wj € Rd, b; € R}

i=1

@ Shallow networks means one hidden layer, i.e.
f=U= (8)
n=1

@ Let Q C RY be a bounded domain
@ Want to use shallow networks to approximate functions f on Q
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Shallow Neural Networks
@ Superpositions of ridge functions

n
ZZ = {Za,-o(w,- -X+b,'), g € R, wj € Rd, b; € R}

i=1

@ Shallow networks means one hidden layer, i.e.
f=U= (8)
n=1

@ Let Q C RY be a bounded domain
@ Want to use shallow networks to approximate functions f on Q
@ Consider two problems:

> Density of X7, in L2(Q)

> Approximation rates in L?(Q2)
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Are Shallow Networks Dense?

Can shallow networks approximate arbitrary functions?

@ Is X7, dense in L2(Q)?

(6] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal approximators.”. In:
Neural networks 2.5 (1989), pp. 359-366, Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural
networks 4.2 (1991), pp. 251-257.
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Are Shallow Networks Dense?

Can shallow networks approximate arbitrary functions?
@ Is X7, dense in L2(Q)?
@ It depends upon o

@ If o is a polynomial,

(6] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal approximators.”. In:
Neural networks 2.5 (1989), pp. 359-366, Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural
networks 4.2 (1991), pp. 251-257.
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Are Shallow Networks Dense?

Can shallow networks approximate arbitrary functions?
@ Is X7, dense in L2(Q)?
@ It depends upon o

@ If o is a polynomial, No!

(6] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal approximators.”. In:
Neural networks 2.5 (1989), pp. 359-366, Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural
networks 4.2 (1991), pp. 251-257.
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Are Shallow Networks Dense?

Can shallow networks approximate arbitrary functions?
@ Is X7, dense in L2(Q)?
@ It depends upon o
@ If o is a polynomial, No!

@ Yes! Aslong as o € CK is not a polynomiall®l.

(6] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward networks are universal approximators.”. In:
Neural networks 2.5 (1989), pp. 359-366, Kurt Hornik. “Approximation capabilities of multilayer feedforward networks”. In: Neural
networks 4.2 (1991), pp. 251-257.
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Non-polynomial activation function < approximation

Y7 is dense in C°(Q) <= o is not a polynomial.

Lemma
[1] J
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Non-polynomial activation function < approximation

Lemma

7, is dense in C%(Q) <= o is not a polynomial.

Proof.

® [o((«w+hey) - x+b) —o(w- x+b)]/h €7,
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Non-polynomial activation function < approximation

Lemma

7, is dense in C%(Q) <= o is not a polynomial.

Proof.
@ [o((w+he)x+b) —alw: x+b)/he Ty,

® 2 olw X+ b)lumo = x0'(b) € T
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Non-polynomial activation function < approximation

Lemma

7, is dense in C%(Q) <= o is not a polynomial.

Proof.
@ [o((w+he)x+b) —alw: x+b)/he Ty,

® 2 olw X+ b)lumo = x0'(b) € T

=X € % if o’ (b) # 0 for some b.
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Non-polynomial activation function < approximation

Lemma

7, is dense in C%(Q) <= o is not a polynomial.
.

Proof.
@ [o((w+hej) - x+b)—o(w-x+b)/heXp,
® 2 o(w x+b)lu—o = x0'(b) € T
=X € Zﬁ] if ’(b) # 0 for some b.
@ Similarly x& = x;*! 4 € ):ﬁ] if (1D (b) # 0 for some b.
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Non-polynomial activation function < approximation

Lemma

7, is dense in C%(Q) <= o is not a polynomial.

Proof.
Q@ [o((w+hej)-x+Db)—o(w-x+b)/he R4S
@ Zo(w:x+b)lu=o = x0'(b) € 7
=X € Zﬁ] if ’(b) # 0 for some b.
@ Similarly x* = x" .- x79 € Zﬁ] if (1D (b) # 0 for some b.

[1] Y7 contains all polynomlals
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Rich function class generated by activation function

We note that, for any w;, b;

m
{w,-x + b,-} are linearly dependent if m > d + 1!
i=1
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Rich function class generated by activation function

We note that, for any w;, b;

m
{w,-x + b,-} are linearly dependent if m > d + 1!

i=1

Question: .

Given w; and b;, when are {o‘(W,-X + b,-)} linearly independent?

i=1
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Rich function class generated by activation function

We note that, for any w;, b;

m
{w,-x + b,-} are linearly dependent if m > d + 1!

i=1

Question: .

Given w; and b;, when are {a(w,-x + b,-)} linearly independent?

i=1
But
Theorem (He, Lin, Xu and Zheng 2018, Siegel and Xu 2019)

Assume that o is NOT a polynomial, then

m

{a(w,-x + b,-)} are linearly independent for any m > 1
i=1
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Rich function class generated by activation function

We note that, for any w;, b;

m
{w,-x + b,-} are linearly dependent if m > d + 1!
i=1

Question: .

Given w; and b;, when are {a(w,-x + b,-)} linearly independent?

i=1
But
Theorem (He, Lin, Xu and Zheng 2018, Siegel and Xu 2019)
Assume that o is NOT a polynomial, then
m
{o(w,-x + b,-)} are linearly independent for any m > 1

i=1

if {w;} are pairwise linearly independent.
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A keyword in deep learning
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A keyword in deep learning

@ nonlinearity
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A keyword in deep learning

@ nonlinearity = Non-polynomial
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Implications

@ Shallow networks are universal function approximators!
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@ Shallow networks are universal function approximators!
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Implications

@ Shallow networks are universal function approximators!

@ What about deeper networks?
> Each layer can approximate the identity to arbitrary accuracy
> So single hidden layer result extends to deeper networks as well
> One way of writing this is
0k C Tk ()

if o is not a polynomial!

> Note that we don’t always have 2[1 4 C 2[1 K]
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Implications

@ Shallow networks are universal function approximators!

@ What about deeper networks?

> Each layer can approximate the identity to arbitrary accuracy
> So single hidden layer result extends to deeper networks as well
> One way of writing this is
0k C Tk ©)

if o is not a polynomial!
> Note that we don’t always have 2[1 K] C 2[1 K]
@ How efficiently can functions be approximated?

> No control of the size of the network or parameters
> Want approximation rates for networks with controlled weights
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0 Introduction

@ Finite Element and Neural Networks

© Neural Network Approximation Class

@ Approximation Properties
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Sampling Argument
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Sampling Argument

Define
Eg ::/Gg(w,x))\(w)dw. (10)
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Sampling Argument

Define
Eg ::/Gg(w,x))\(w)dw. (10)

Eng := ~/G" g(wi, -+ wn)AM(wi)A(w2) . .. AMwn)dwidws . . . dwp. (11)
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Sampling Argument

Define
Eg := /Gg(w,x))\(w)dw. (10)
Eng := / g(wi, -+ wn)AM(wi)A(w2) . .. AMwn)dwidws . . . dwp. (11)
Gn
Lemma
For any g € L>(G), we have
il = 1 1
En(Eg -~ gg(wo)z = * (B() - (E(9))?) < TE(SD) (12)
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Sampling Argument
. 1 &
o Let u = [ g(w, x)A(x)dx and the sampling u, = 5 ;g(wi, X)

()~ un(x) = EG(x) — 3 gle, ) (13)
i=1
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Sampling Argument
. 1 &
o Let u = [ g(w, x)A(x)dx and the sampling u, = 5 ;g(wh X)

()~ un(x) = EG(x) — 3 gle, ) (13)
i=1

@ It holds that
1 1
En (IIEg— *Zg(w’)” ) SE(Igl®) < (14)
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Sampling Argument
. 1 &
o Let u = [ g(w, x)A(x)dx and the sampling u, = 5 ;g(wh X)

()~ un(x) = EG(x) — 3 gle, ) (13)
i=1

@ It holds that
LY (14)

(IIEQ—Zg(wolI>< ~E(lg1) < —;

e There exist {w}! ; such that u, = %27:1 g(wy, x) satisfies

1 1 = 1
lu—unllo <n—2 or ||]EQ—EZQ(WI',X)||0§” 2. (19)
=1
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Approximation Rates for Cosine Networks
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Approximation Rates for Cosine Networks

@ Cosine networks
n
Yoo = {u,, tup = ajcos(wix + b)), Vaj w,-,b,-}
i=1

@ |Integral representation of u in terms of cosine functions
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Approximation Rates for Cosine Networks

@ Cosine networks

n
Yoo = {u,, tup = ajcos(wix + b)), Vaj w,-,b,-}
i

@ |Integral representation of u in terms of cosine functions

ux) = Re / I X () dl
R
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Approximation Rates for Cosine Networks

@ Cosine networks

n
Yoo = {un tup = ajcos(wix + b)), Vaj w,-,b,-}
i

@ |Integral representation of u in terms of cosine functions

u(x)

Re/d TV X fi(w) dw
R

/d cos(2mw - X + b(w))|U(w)|dw  (by U(w) = |U(w)[eP(«))
R
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Approximation Rates for Cosine Networks

@ Cosine networks

n
Yoo = {un tup = ajcos(wix + b)), Vaj w,-,b,-}
i

@ |Integral representation of u in terms of cosine functions

u(x)

Re/d TV X fi(w) dw
R

/d cos(2mw - X + b(w))|U(w)|dw  (by U(w) = |U(w)[eP(«))
R

= 7o,

12l /dcos(27rw~x+b(w)))\(w)dw (A(w) = Lzl
R
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Approximation Rates for Cosine Networks

@ Cosine networks

n
Yoo = {un tup = ajcos(wix + b)), Vaj w,-,b,-}
i

@ |Integral representation of u in terms of cosine functions

u(x)

Re/d TV X fi(w) dw
R

/d cos(2mw - X + b(w))|U(w)|dw  (by U(w) = |U(w)[eP(«))
R

= 7o,

12l /dcos(27rw~x+b(w)))\(w)dw (A(w) = Lzl
R

1] 4 E (g(w, X)) (9(w, X) = cos(27w - X + b(w)))
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Approximation Rates for Cosine Networks

@ Cosine networks

n
Yoo = {un tup = ajcos(wix + b)), Vaj w,-,b,-}
i

@ |Integral representation of u in terms of cosine functions

u(x)

Re/d TV X fi(w) dw
R

/d cos(2mw - X + b(w))|U(w)|dw  (by U(w) = |U(w)[eP(«))
R

= 7o,

12l /dcos(27rw~x+b(w)))\(w)dw (A(w) = Lzl
R

1] 4 E (g(w, X)) (9(w, X) = cos(27w - X + b(w)))
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Approximation Rates for Cosine Networks!”!

[ Lee K Jones. “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regres-
sion and neural network training”. In: The annals of Statistics 20.1 (1992), pp. 608-613.
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Approximation Rates for Cosine Networks!”!

o The preceeding sampling argument gives the approximation rate:

Theorem

n n
There exists un € T3 = {Z ajcos(wi - X + b)), Y _|aj| < M} such that
i=1 i=1

il
lu = unll < N~ 2|0l 1 (gay-

[ Lee K Jones. “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regres-
sion and neural network training”. In: The annals of Statistics 20.1 (1992), pp. 608-613.
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Spectral Barron Norm

Generalization: ,
u,,ei'x]:f;f;,, lu = tnllpm@) S N~ 2 l|lullgm(q)

where B™(Q) is the spectral Barron space.

llullgm@) = inf /(1+|w|)m|fle(w)\dw
uelo=u JRd
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Approximation Rates for the ReLU* Network
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Approximation Rates for the ReLU* Network

Note that

]
u(x)— > —D*u(0)x* = IIPllu(G)/ 9(x,0)A(0)d6 = |lpll 1 () E(9)
lal<k @

with 6 = (z,t,w) € G={-1,1} x [0, T] x RY,

p(0) = (217y,\s(zt,w)||a<w)|||w||k+‘

s(zt,w) = {( Bj cos(z|lw||t + b(w)) K is odd,

(- sin(z||w||t + b(w)) K is even.
g(x,0) = (z& - x — 1)K sgns(zt, w), A0) = _ol0)
ol a)

Jinchao Xu Math of NN CUHK
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Approximation Rates for the ReLUEI®]
Lemma (Sampling Analysis)

There exist wj, tj such that

1
llu = unllpm < n™2 ||ull gmi i (18)

) i c <
with up = l%}( aDau(O)X“ b 2[5,-@,- x — )k,
a|< =

18 Jason M Klusowski and Andrew R Barron. “Risk bounds for high-dimensional ridge function combinations including neural
networks”. In: arXiv preprint arXiv:1607.01434 (2016).

11 Jinchao Xu. “The finite neuron method and convergence analysis”. In: arXiv preprint arXiv:2010.01458 (2020).
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Approximation Rates for the ReLUEI®]
Lemma (Sampling Analysis)

There exist wj, tj such that

1
llu = unllpm < n™2 ||ull gmi i (18)

) 1
with up = Y Sipru)x® +—Zﬁ,(w/ x — )k,

|| <k
Lemma (More Refined Analysis: Stratified Method)
There exist w;, t; such that
llu = tnllpgm < 123 |0 e (19)
with & = —— ” ” andup= > alDau(O X +—Z,8,(w, x —t)k.
wi la| <k

18 Jason M Klusowski and Andrew R Barron. “Risk bounds for high-dimensional ridge function combinations including neural
networks”. In: arXiv preprint arXiv:1607.01434 (2016).

1 Jinchao Xu. “The finite neuron method and convergence analysis”. In: arXiv preprint arXiv:2010.01458 (2020).
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More General Activation Functions

@ Using similar techniques, we can extend these rates to more general activation functions
as welll'%

Theorem

Suppose that o € L>° and satisfies the decay condition

lo(O)] < (1 +1t)° (20)

for some p > 1. Let u € L?(Q). Then we have

[NE

—
N
—_

—

: - <
u,,'ggg U= tnll 2y < llullgr(oyn

101 jonathan W Siegel and Jinchao Xu. “Approximation rates for neural networks with general activation functions”. In: Neural
Networks (2020).
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More General Activation Functions (cont.)

@ At the cost of a worse rate, we can even drop almost all assumptions onl'] &

Theorem

Suppose that o € L and & is continuous and non-zero at a single point. Let u € L?(Q). Then
we have

: _1
u,,'2>f:g lu = tnll2qy < Nlullgr @)™ =- (22)

@ |In particular:

» Holds forall o € L' N0 L>®
> Holds for all o0 € BV

M1 Jonathan W Siegel and Jinchao Xu. “Approximation rates for neural networks with general activation functions”. In: Neural
Networks (2020).
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0 Introduction

@ Finite Element and Neural Networks

© Neural Network Approximation Class

@ Approximation Spaces
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Stable Neural Network Approximation

@ Recall: approximation of cosine neural network from the function class (by sampling
argument):

n n
o= {Za,-cos(w,--xm),z lail <M, M= |a||u}
i=1 i=1
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Stable Neural Network Approximation

@ Recall: approximation of cosine neural network from the function class (by sampling
argument):

n n
M = {Z gjcos(wi- X+ b)),y la| <M, M= |0||L1}

i=1 i=1

@ How far can the sampling argument go?
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Stable Neural Network Approximation

@ Recall: approximation of cosine neural network from the function class (by sampling
argument):

n n
= {Za,-cos(w,--xm),z lail <M, M= anu}
i=1 i=1

@ How far can the sampling argument go?
@ Consider approximation from the class

n n
oM = {Zam(w,- “X+b), wi €RY, b ER, Y gy < M} (23)

i=1 i=1

of neural networks with ¢!-bounded outer coefficients.
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Stable Neural Network Approximation

@ Recall: approximation of cosine neural network from the function class (by sampling
argument):

n n
= {Za,-cos(w,--xm),z lail <M, M= anu}
i=1 i=1

@ How far can the sampling argument go?
@ Consider approximation from the class

n n
M= {Z gio(wi- X+ b)), wi €R?, bR, |aj| < M} (23)

i=1 i=1

of neural networks with £'-bounded outer coefficients.
@ More generally for a dictionary D ¢ H = L?(R), consider

n n
T m(D) = {Z aih, hieD, > |aj < M} (24)
i=1 i=1
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Stable Neural Network Approximation

@ Recall: approximation of cosine neural network from the function class (by sampling
argument):

n n
= {Za,-cos(w,--xm),z lail <M, M= anu}
i=1 i=1

@ How far can the sampling argument go?
@ Consider approximation from the class

n n
M= {Z gio(wi- X+ b)), wi €R?, bR, |aj| < M} (23)

i=1 i=1

of neural networks with £'-bounded outer coefficients.
@ More generally for a dictionary D ¢ H = L?(R), consider

n n
T m(D) = {Z aih, hieD, > |aj < M} (24)
i=1 i=1

@ Let M < oo be fixed and consider approximation as n — co.
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Stable Dictionary Approximation Space

Siegel & Xu, 20211121

@ Define a closed convex hull of +D:

By(D) = U2, 2211 ) (25)

1121 jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.
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Stable Dictionary Approximation Space

Siegel & Xu, 20211121

@ Define a closed convex hull of +D:
By(D) = U2, 231 ) (25)

@ Define a norm
Il )y = inf{r > 0:f e rBy(D)}, (26)

as the guage of the set B (D).

1121 jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.
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Stable Dictionary Approximation Space

Siegel & Xu, 20211121

@ Define a closed convex hull of +D:

B; (D) = U?,i1 231 ) (25)
@ Define a norm
Il )y = inf{r > 0:f e rBy(D)}, (26)
as the guage of the set B (D).
@ The unit ball is
{feH: |Ifllx,m <1} = Bi(D). (27)
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Stable Dictionary Approximation Space

Siegel & Xu, 20211121

@ Define a closed convex hull of +D:

By(D) = U2, 231 ) (25)

@ Define a norm
Il )y = inf{r > 0:f e rBy(D)}, (26)

as the guage of the set B (D).

@ The unit ball is

{feH: |Ifllx,m <1} = Bi(D). (27)
@ We have

{f € H: Il ) < o0} = Um0Up2 X7 (28)

is a Banach space.

1121 jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.
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Example: H = (2

@ LetH=1¢2,D={e,e0,...}.
@ What is B;(D)?
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Example: H = (2

@ LetH=1¢2,D={e,e0,...}.
@ What is B;(D)?
@ The convex hull of £D is

Bi(D) = {(ar,a,..) € #: > |a <1} (29)
i=1
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Example: H = (2

@ LetH=1¢2,D={e,e0,...}.
@ What is B;(D)?
@ The convex hull of £D is

Bi(D) = {(ar,a,..) € #: > |a <1} (29)
i=1

@ Thus the norm is given by
K1(D) = £ c £2. (30)
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Stable Dictionary Approximation Space

Theorem (Siegel & Xu 2021)

A function f € H = L2(2) can be approximated at all, i.e.

lim_, ot = fllw =0, (31)

n—0o0 foex, y(D

for a fixed M < oo if and only if
f € MB;(D) C K1(D).
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Stable Dictionary Approximation Space

Theorem (Siegel & Xu 2021)

A function f € H = L2(2) can be approximated at all, i.e.

lim_, ot = fllw =0, (31)

n—0o0 foex, y(D

for a fixed M < oo if and only if
f € MB; (D) C K1(D).
Furthermore, if
ID[| = sup [[hllx < oo
heb

we have 1
inf f—fallp < n~2||D||||f . 32
i I = falls < 02Dl o (32)
v




The Spectral Barron Space

@ LetfeBy(D),H=1L2(Q),Q=B¢={xecR?: x| <1}, and

D=FY = {(1+ |w|)~Se¥™*: w e R} (33)

131 Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.

Jinchao Xu Math of NN CUHK 54/59



The Spectral Barron Space
@ Letfe By(D), H=1L?Q),Q=BY={xecR?:|x| <1} and
D=FY = {(1+ |w|)~Se¥™*: w e R} (33)

@ In this case the norm is characterized by!'S]

ety =, 7, [0+ lebeliseia, (34)

where the infimum is taken over all extensions f; € L' (RY).

131 Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.
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The Spectral Barron Space

@ LetfeBy(D),H=1L2(Q),Q=B¢={xecR?: x| <1}, and

D =FY = {(1 + |w]) "°*™“*: w e R}

@ In this case the norm is characterized by!'S]

Ifliysg) =, it [0+ lebeliseia,
1

where the infimum is taken over all extensions f; € L' (RY).
@ Property:
HS+8+2(Q) < BS(Q) < WS=(Q).

(33)

(34)

(35)

131 Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.
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The Barron Space

The results are proved in Siegel and Xu 2021[14]
@ LetH=12(Q),Q =89 ={xcRI: |x <1},and

D =P = {ok(w-x+b): we 8" be[-22], (36)

where o = [max(0, x)]¥.

14 Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU* and Cosine Networks. 2021.

151 w. E, Chao Ma, and Lei Wu. “Barron spaces and the compositional function spaces for neural network models”. In: arXiv
preprint arXiv:1906.08039 (2019).

[l Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: /EEE Transactions on
Information theory 39.3 (1993), pp. 930-945.
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The results are proved in Siegel and Xu 2021[14]
@ LetH=12(Q),Q =89 ={xcRI: |x <1},and

D =P = {ok(w-x+b): we 8" be[-22], (36)

where o = [max(0, x)]¥.
@ When k = 1, K4(P{) is equivalentto the Barron space (introduced inl*®).
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The Barron Space

The results are proved in Siegel and Xu 2021[14]
@ LetH=12(Q),Q =89 ={xcRI: |x <1},and

D =P = {ok(w-x+b): we 8" be[-22], (36)

where o = [max(0, x)]¥.
@ When k = 1, K4(P{) is equivalentto the Barron space (introduced inl*®).
@ Whenk =0,d =1, K(P¢) = BV([-1,1]).
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The Barron Space

The results are proved in Siegel and Xu 2021[14]
@ LetH=12(Q),Q =89 ={xcRI: |x <1},and

D =P = {ok(w-x+b): we 8" be[-22], (36)

where o = [max(0, x)]¥.
@ When k = 1, K4(P{) is equivalentto the Barron space (introduced inl*®).
@ Whenk =0,d =1, K(P¢) = BV([-1,1]).
@ We haveK+(Pg) D K+(FZ, ,) (for k = 0, Barron 1993['])

14 Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU* and Cosine Networks. 2021.

151 w. E, Chao Ma, and Lei Wu. “Barron spaces and the compositional function spaces for neural network models”. In: arXiv
preprint arXiv:1906.08039 (2019).

[l Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: /EEE Transactions on
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Previous Best Results

For some dictionaries D, the n—2 approximation rate can be improved!
@ For D = Pg, we havel'”]

11
sup inf ||f — 1 gy SN 27 2d. (37)
AL I = ol 2(gay

@ For D = P? for k > 1, we havel'®,['%,if f is in some spectral Barron space:

. _1_1
QA8 I~ follzgggy S 17270 (38)

n€2p,

(171 Yuly Makovoz. “Random approximants and neural networks”. In: Journal of Approximation Theory 85.1 (1996), pp. 98—109.

['8] jason M Klusowski and Andrew R Barron. “Approximation by Combinations of ReLU and Squared ReLU Ridge Functions
With ¢! and €0 Controls”. In: IEEE Transactions on Information Theory 64.12 (2018), pp. 7649-7656.

(19 Jinchao Xu. “Finite Neuron Method and Convergence Analysis”. In: Communications in Computational Physics 28.5 (2020),
pp. 1707-1745.
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Previous Best Results

For some dictionaries D, the n—2 approximation rate can be improved!
@ For D = Pg, we havel'”]

11
sup inf ||f — 1 gy SN 27 2d. (37)
AL I = ol 2(gay

@ For D = P? for k > 1, we havel'®,['%,if f is in some spectral Barron space:

. _1_1
QA8 I~ follzgggy S 17270 (38)

n€2p,

@ What are the optimal approximation rates?

(171 Yuly Makovoz. “Random approximants and neural networks”. In: Journal of Approximation Theory 85.1 (1996), pp. 98—109.

['8] Jjason M Klusowski and Andrew R Barron. “Approximation by Combinations of ReLU and Squared ReLU Ridge Functions
With ¢! and €0 Controls”. In: IEEE Transactions on Information Theory 64.12 (2018), pp. 7649-7656.

119 Jinchao Xu. “Finite Neuron Method and Convergence Analysis”. In: Communications in Computational Physics 28.5 (2020),
pp. 1707-1745.
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New Optimal Bounds
We have the optimal approximation rates!2!

Theorem

ForD = P¢ fork > 1, we have

1 2kt s
n~2- 2d < sup inf
feB; (D) h€Zn,m

1 2kt
If = fall gy S n™27 20

(20 jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.
(211 Qun Lin, Hehu Xie, and Jinchao Xu. “Lower bounds of the discretization error for piecewise polynomials”. In: Mathematics of

Computation 83.285 (2014), pp. 1-13.
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New Optimal Bounds

We have the optimal approximation rates!2!

Theorem

ForD = P¢ fork > 1, we have

_ 2k+1 1 _ 2k+1

1
n~2= 20 5 sup inf |[[f—follpq SNT27 2
feB; (D) h€Zn,m

In comparison: optimal bound for finite elementsl?1]

Theorem

Assume that V,’,‘ is a finite element of degree k on quasi-uniform mesh {7} of O(N) elements.
Assume u is sufficiently smooth and not piecewise polynomials, then we have

_k

c(u)n™s < inf [|u— Va2 < CU)n~d = O(HK). (40)
vhevff

(20 jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUX and Cosine Networks. 2021.

(211 Qun Lin, Hehu Xie, and Jinchao Xu. “Lower bounds of the discretization error for piecewise polynomials”. In: Mathematics of
Computation 83.285 (2014), pp. 1-13.
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Removing the constraint that >°7 , |a;| < M

Define

n
ST = {Z aiok(wi- X + by), wj €RY, b €R,a € R} : (41)
=1

Then XX has the following approximation property!22!
n

Theorem (Siegel and Xu)

n- f if s=1
inf If=fll S 9 " ey Il v 2
faexk n log n ||f||)c1(1Fg) for some s

@ Improves result of Barronl?3 by relaxing condition on f

[22] jonathan W Siegel and Jinchao Xu. “High-Order Approximation Rates for Neural Networks with ReLUK Activation Functions”.
In: arXiv preprint arXiv:2012.07205 (2020).

(23] Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: /EEE Transactions on
Information theory 39.3 (1993), pp. 930-945.
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Removing the constraint that >°7 , |a;| < M

Define

n
Zﬁ = {ZaiUk(w,'~X+b,'), wj ERd, b; € R, a; GR}. (41)
i=1

Then XX has the following approximation property!22!
n

Theorem (Siegel and Xu)

_1 .

inf [f=fl<d " 2 Il ve) it s=3
n X H - n” ~ —(k+1) s

T n log n ||f||)c1(1ﬁg) for some s

nEXy

@ Improves result of Barronl?3 by relaxing condition on f
@ Shows that very high order approximation rates can be attained with sufficient smoothness

[22] jonathan W Siegel and Jinchao Xu. “High-Order Approximation Rates for Neural Networks with ReLUK Activation Functions”.
In: arXiv preprint arXiv:2012.07205 (2020).

(23] Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: /EEE Transactions on
Information theory 39.3 (1993), pp. 930-945.
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Removing the constraint that >°7 , |a;| < M

Define

n
Zﬁ = {ZaiUk(w,'~X+b,'), wj ERd, b; € R, a; GR}. (41)
i=1

Then XX has the following approximation property!22!
n

Theorem (Siegel and Xu)

n~z2 f if s=1
inf 1 —fl <4 7 oo 1l og) 2
T n log n ||f||)c1(1ﬁg) for some s

nEXy

@ Improves result of Barronl?3 by relaxing condition on f

@ Shows that very high order approximation rates can be attained with sufficient smoothness
@ Comparison with FEM:

d
inf [lu—w| ~< inf lu—v| ¢ .
wexk ve vk

[22] jonathan W Siegel and Jinchao Xu. “High-Order Approximation Rates for Neural Networks with ReLUX Activation Functions”.
In: arXiv preprint arXiv:2012.07205 (2020).

(23] Andrew R Barron. “Universal approximation bounds for superpositions of a sigmoidal function”. In: /EEE Transactions on
Information theory 39.3 (1993), pp. 930-945.
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