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Non-Convex Optimizations

Non-Convex optimizations are powerful tools for solving many problems.

Matrix singular value / eigenvalue problems

Matrix low-rank approximation, low-rank matrix completion /
recovery

Deep neural network training

Simple algorithms (e.g., gradient descent, stochastic gradient descent,
project gradient descent, alternating minimization) often provide good
solutions efficiently and effectively, despite possible non-optimal critical
points.
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A classical example: Power Iteration

To find the top singular value and vectors (σ1,u1, v1) of A ∈ Rn×n

(assume σ1 > σ2), the power iteration is: starting from (uinit , vinit),{
u ← Av/‖Av‖2,
v ← ATu/‖ATu‖2.

It is well known that, provided uinit 6⊥ u1 and vinit 6⊥ v1,

sin∠(u,u1)→ 0, sin∠(v , v1)→ 0, linearly.

The power iteration is an alternating minimization algorithm for
solving the non-convex optimization

min
‖u‖2=1,‖v‖2=1

−uTAv
(
⇐⇒ max

‖u‖2=1,‖v‖2=1
uTAv

)
Why does the power iteration almost surely find (u1, v1)?
Moreover, variants of the power iteration are successful in SVD
computation, despite of the non-convex essence of SVD as an
optimization. Why?

3 / 34



A classical example: Power Iteration

To find the top singular value and vectors (σ1,u1, v1) of A ∈ Rn×n

(assume σ1 > σ2), the power iteration is: starting from (uinit , vinit),{
u ← Av/‖Av‖2,
v ← ATu/‖ATu‖2.

It is well known that, provided uinit 6⊥ u1 and vinit 6⊥ v1,

sin∠(u,u1)→ 0, sin∠(v , v1)→ 0, linearly.

The power iteration is an alternating minimization algorithm for
solving the non-convex optimization

min
‖u‖2=1,‖v‖2=1

−uTAv
(
⇐⇒ max

‖u‖2=1,‖v‖2=1
uTAv

)
Why does the power iteration almost surely find (u1, v1)?
Moreover, variants of the power iteration are successful in SVD
computation, despite of the non-convex essence of SVD as an
optimization. Why?

3 / 34



A classical example: Power Iteration

To find the top singular value and vectors (σ1,u1, v1) of A ∈ Rn×n

(assume σ1 > σ2), the power iteration is: starting from (uinit , vinit),{
u ← Av/‖Av‖2,
v ← ATu/‖ATu‖2.

It is well known that, provided uinit 6⊥ u1 and vinit 6⊥ v1,

sin∠(u,u1)→ 0, sin∠(v , v1)→ 0, linearly.

The power iteration is an alternating minimization algorithm for
solving the non-convex optimization

min
‖u‖2=1,‖v‖2=1

−uTAv
(
⇐⇒ max

‖u‖2=1,‖v‖2=1
uTAv

)

Why does the power iteration almost surely find (u1, v1)?
Moreover, variants of the power iteration are successful in SVD
computation, despite of the non-convex essence of SVD as an
optimization. Why?

3 / 34



A classical example: Power Iteration

To find the top singular value and vectors (σ1,u1, v1) of A ∈ Rn×n

(assume σ1 > σ2), the power iteration is: starting from (uinit , vinit),{
u ← Av/‖Av‖2,
v ← ATu/‖ATu‖2.

It is well known that, provided uinit 6⊥ u1 and vinit 6⊥ v1,

sin∠(u,u1)→ 0, sin∠(v , v1)→ 0, linearly.

The power iteration is an alternating minimization algorithm for
solving the non-convex optimization

min
‖u‖2=1,‖v‖2=1

−uTAv
(
⇐⇒ max

‖u‖2=1,‖v‖2=1
uTAv

)
Why does the power iteration almost surely find (u1, v1)?

Moreover, variants of the power iteration are successful in SVD
computation, despite of the non-convex essence of SVD as an
optimization. Why?

3 / 34



A classical example: Power Iteration

To find the top singular value and vectors (σ1,u1, v1) of A ∈ Rn×n

(assume σ1 > σ2), the power iteration is: starting from (uinit , vinit),{
u ← Av/‖Av‖2,
v ← ATu/‖ATu‖2.

It is well known that, provided uinit 6⊥ u1 and vinit 6⊥ v1,

sin∠(u,u1)→ 0, sin∠(v , v1)→ 0, linearly.

The power iteration is an alternating minimization algorithm for
solving the non-convex optimization

min
‖u‖2=1,‖v‖2=1

−uTAv
(
⇐⇒ max

‖u‖2=1,‖v‖2=1
uTAv

)
Why does the power iteration almost surely find (u1, v1)?
Moreover, variants of the power iteration are successful in SVD
computation, despite of the non-convex essence of SVD as an
optimization. Why?

3 / 34



A classical example: Power Iteration

Landscape of the non-convex optimization:

min
‖u‖2=1,‖v‖2=1

−uTAv

The (Lagrange) critical points (u, v , λ) must satisfy

Av = λu, ATu = λv , λ = uTAv = vTATu, ‖u‖2 = ‖v‖2 = 1

So all the critical points are

(±ui ,±vi , σi ), (±ui ,∓vi ,−σi ), i = 1, . . . , n.

Among all critical points (assume all singular values are distinct):
I Only (±u1,±v1, σ1) are local minimizers, which are also global.
I Only (±u1,∓v1,−σ1) are local maximizers, which are also global.
I All other critical points are strict saddle points.

Thus, the non-convex optimization is not as difficult as in general
cases — any algorithms that converge to a local minimum find
(±u1,±v1).
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This talk

This talk present a similar, recent, and more complicated example —
Phase retrieval via non-convex optimization, and its landscape analysis.

1 Phase Retrieval

2 Landscape of intensity equation fitting

3 Landscape of amplitude equation fitting

4 Extension to neural network training

5 Conclusion
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Phase Retrieval

Solving a length-n vector x from its phaseless measurements

|a∗r x |
2 = yr , r = 1, 2, ...m.

In matrix form, we need to recover x from

|Ax |2 = y , A =

a∗1
...

a∗m


We need to solve m quadratic equations with n unknowns.

An application is Phase Retrieval, which are used widely in X-ray
crystallography, coherent diffractive imaging, astronomial imaging,
biomedical imaging, quantum mechanics, etc.
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Phase Retrieval

In a diffraction imaging, only magnitudes are observed, and phases are
missing.

Figure: Diffraction Pattern

Let x be the unknown image. By Fresnel Diffraction Principle, the
observed data y is

|Ax |2 = y
where A = [F ·Diag(di ) . . . F ·Diag(dL)]T with F the Fourier transform
and di ’s coded diffraction patterns.
Phase retrieval is a fundamental problem in many other imaging
techniques as well.
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When phase retrieval is solvable?

Obviously, phase retrieval cannot have a unique solution because
|Az |2 = |A(cz)|2 for a global sign c satisfying |c | = 1.

When phase retrieval has a unique solution up to a global sign?

Solvability ([Wang & Xu, 2015])

I For the real case x ∈ Rn, if m ≥ 2n − 1, then phase retrieval has a unique
solution up to a global sign almost surely for all A.

I For the complex case x ∈ Cn, if m ≥ 4n − 4, then phase retrieval has a
unique solution up to a global sign almost surely for all A.
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Solving Phase Retrieval Is NOT Easy

Consider the stone problem, which is to separate n stones into two
groups with equal weights. It can be recast into a special case of our
phase retrieval problem.

Let wi , i = 1, . . . , n, be the weight of stones. Let x ∈ {±1}n be an
indicator vector of the two groups.{

|e∗i x |2 = 1, i = 1, 2, ...n,

|w∗x |2 = 0.

The stone problem is NP hard.

For simplicity, in the rest of the talk we assume all vectors are real and
{ar}mr=1 are i.i.d. random Gaussian.
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Intensity equations

We may solve the squared equations, called intensity equations, directly.

|a∗r x |2 = yr , r = 1, . . . ,m.

Convex solvers.
I The intensity equations are linear equations on the rank-1 matrix xx∗

|a∗r x |2 = yr ⇐⇒ 〈ara∗r , xx∗〉 = yr , r = 1, . . . ,m

Then convex low-rank matrix recovery techniques are applied.
I Nice theories of recovery guarantee [Candes, Strohmer, 2013; Candes,

Li, 2015], e.g., m = O(n) equations are sufficient.
I Slow computation: The number of unknowns are n2 instead of n,

unnecessarily large.
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Non-convex solvers.
I Minimize the least squares fitting to intensity equations directly

[Candes, Li, Soltanolkotabi, 2015; Chen, Candes, 2017]

min
z

f (z), f (z) =
1

2m

m∑
r=1

(
(aT

r z)2 − yr
)2

I Or minimize the least squares fitting to the linear equations on the
manifold of rank-1 matrices (denoted by M1) [Cai, Wei, 2018]

min
Z∈M1

F (Z ), F (Z ) =
1

2m

m∑
r=1

(
〈araT

r ,Z 〉 − yr
)2

I Usually in two stages:
Initialization (by spectral initialization) + Refinement (by gradient-type
algorithms).

I Fast computation: only n unknowns.
I Nice theories of recovery guarantee: m = O(n) equations are sufficient.
I The computation and analysis of f (respectively F ) were both carried

out in a neighbourhood of ±x (respectively xxT ).
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Global Landscape

Though non-convex algorithms need a special initialization in theory,
they work well even with a random initialization.

This reminds us to check the non-convex optimization globally.

Consider a 1D example: f (z) = (|z |2 − 1)2.

For this 1-D example:
I No spurious local minimum: all local minima are global.
I The function is strongly convex in a small neighborhood of any global

minimizer.
I Therefore, any algorithm finding a local minimum will give a global

minimum. (e.g. gradient descent with random initialization)
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Favourable landscape

Theorem ([Sun, Qu, & Wright, 2018])

Assume A is random Gaussian. Then, if

m ≥ Cn log3 n,

then with overwhelming probability f (z) satisfies:

There are no spurious local minimum: all local min are global min.

∇2f (z) has a negative eigenvalue if ∇f (z) = 0 and z 6= cx with
|c| = 1.

The sampling complexity m = O(n log3 n) is not optimal.

We improved the result to m = O(n log n) recently [Cai, Huang, Li,
Wang, forthcoming].

There is still a gap to the optimal sampling complexity.
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Activated Least Squares Fitting

f (z) =
1

2m

m∑
r=1

(
(aT

r z)2 − yr
)2
.

The gap is due to the 4-th moment of Gaussians involved in f .

Given a large β, yr := (aT
r x)2 ≤ β‖x‖22 should hold true for most r ,

since aT
r x is random Gaussian.

Those outliers yr > β‖x‖22 will have a very large weight in f , which
will make f deviate too much from its expectation.
To avoid this, we activate only those well-behaved equations in the
least squares fitting.
Similar activation scheme is applied to aT

r z .
We consider the minimization of

f̃ (z) =
1

2m

m∑
r=1

(∣∣∣aT
r z
∣∣∣2 − yr

)2

· h

(
|a∗r z |

2

‖z‖22

)
h

(
myr
‖y‖1

)
,

where h(·) is a smooth activation function with bounded derivatives
to approximate 1[0,β].
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Example of activation functions

h
(
|a∗

r z |2

‖z‖22

)
is to activate only those measurements |aT

r z |2 ≤ β‖z‖22.

Since ‖y‖1/m ≈ ‖x‖22, h
(

myr
‖y‖1

)
is to activate only those equations

|aT
r x |2 / β‖x‖22.

Example:

h(u) =


1, 0 < u ≤ β
−6v5 + 15v4 − 10v3 + 1, v = u−β

γ−β , β < u < γ

0, u ≥ γ
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Landscape with optimal m

For any fixed δ ∈ (0, 1
100 ], we partition

Rn := R1 ∪R2 ∪R3 ∪ {0}

R1 =
{
z
∣∣ minv=±x ‖z − v‖2 < 1

5‖x‖2
}

— Strongly convex.

R3 =
{
z
∣∣0 < ‖z‖2

‖x‖2 ≤
1
3 − δ

}
— Negative radial derivarive. So no

critical points, and 0 is local max.

R2 the rest — Possible critical points in a sub-region where the
Hessian matrix have both negative and positive eigenvalues.
Therefore, any critical points in this region must be strict saddle.
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Landscape with optimal m

Theorem ([Li, Cai, Wei, IEEE TIT, 2020])

Assume A is random Gaussian. For any δ ∈
(
0, 1

100

]
, if m > C1n, then

with probability at least 1− e−C2n we have the following

1 For any z ∈ R1 and any unit u ∈ Rn,

uT∇2f̃ (z)u ≥ ‖x‖22/25.

2 If z ∈ R2 and ∇f̃ (z) = 0, then z can only be in

R0
2 =

{
z
∣∣ ‖z‖2 ∈ (1/3− δ, 1/3 + δ)‖x‖2, |〈z , x〉| < δ‖x‖2

}
,

which satisfies, for any z ∈ R0
2 ∩R2,

λmin

(
∇2f (z)

)
≤ −3‖x‖2 and λmax

(
∇2f̃ (z)

)
≥ 2‖x‖2.

3 For any z ∈ R3,

〈z ,∇f̃ (z)〉 ≤ −5δ‖z‖2‖x‖2.

Here C1, C2 are constants depending only on δ, γ, β.
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Implication of the well-behaved Landscape

Our results imply: with m = O(n), the activated least squares fitting to
the intensity equations

has no spurious local minima. Any local min is global.

is strongly convex around global minimizers.

0 is a local max.

any other critical points are strict saddle.

Therefore, any algorithm for a local min will give an exact phase
retrieval by minimizing f̃ .

The results are presented in:

Z. Li, J.-F. Cai, K. Wei, Towards the Optimal Construction of a Loss
Function without Spurious Local Minima for Solving Quadratic
Equations, IEEE Transactions on Information Theory, 66(5):
3242–3260, 2020.
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On-going projects

Landscape of the least square fitting on M1, the manifold of all rank-1
matrices

F (Z ) =
1

2m

m∑
r=1

(
〈araT

r ,Z 〉 − yr
)2
.

The main advantage is that there is no equivalent critical points of F on
M1. This is significant especially in the complex case. For example, in the
complex case,

The global minimizer of F on M1 is unique.

Global minimizers of f on Cn is one dimensional and connected.
Thus, f cannot be storngly convex around global minimizers.

Practically, the optimization of F on M1 is faster than the optimization of
f on Rn or Cn.
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Amplitude equations

Instead of intensity equations, we may also solve the following amplitude
equations

|a∗r x | =
√
y r , r = 1, . . . ,m.

Solving amplitude equations is often faster than intensity equations.

Convex solvers: Relax amplitude equations to convex constraints

−√y r ≤ a∗r x ≤
√
y r , r = 1, . . . ,m.

I Maximize the correlation with an anchor vector z0, which is a rough
estimation of x [Goldstein, Studer, 2018; Bahmani, Romberg, 2017].

max
z
〈z0, z〉, s.t. −√y r ≤ a∗r z ≤

√
y r , r = 1, . . . ,m,

I Fast computation: only n unknowns.
I Nice theory of recovery guarantee: m = O(n) is sufficient for an exact

phase retrieval.
I Drawback: Need a good z0.
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Non-convex solvers.
I Minimize the least squares fitting of amplitude equations [Wang,

Giannakis, Eldar, 2017]

min
z

g(z), g(z) =
1

2m

m∑
r=1

(|aT
r z | − √y r )

2

I Or guess a phase for amplitude equations, and then solve the resulting
linear equations [Wei, 2015; Tan, Vershynin, 2019; Netrapalli, Jain,
Sanghavi, 2013].

I Usually in two stages: Initialization + Refinement. To overcome
non-smoothness, at each step, equations with a small |aT

r z | will be
de-activated.

I Fast computation: Only matrix-vector products involved.
I Nice theory of recovery guarantee: Usually m = O(n) is sufficient for

an exact phase retrieval.
I The computation and analysis is done locally in a neighbourhood of x .
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Least squares fitting of amplitude equations

g(z) =
1

2m

m∑
r=1

(|aT
r z | − √y r )2

It is a piecewise quadratic function.

When g is smooth at z ,

∇2g(z) =
m∑
r=1

araT
r ≈ I

I That’s why amplitude equations based solvers are faster.
I However, g may have a spurious local minimum, because if g is

smooth at a critical point then it must be a local minimum.

But the expectation of g has a good landscape

Eg(z) =
1

2

(
‖z‖22 −

4

π

(
τ + σ arctan

σ

τ

)
+ ‖x‖22

)
,

where σ = zT x
‖z‖2‖x‖2 and τ =

√
1− σ2.
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Smoothed amplitude equations least squares fitting

How to modify g such that the gradient converges fast and the
landscape is good?

We consider

g̃(z) =
m∑
r=1

yr
2
·
(
φ

(
aT
r z
√
yr

)
− 1

)2

.

I If φ(t) = |t|, then g̃ = g .
I If φ(t) = |t| for |t| > α and φ(t) = α for |t| ≤ α, then gradient

descent for g̃ is the truncated amplitude flow algorithm.
I When φ is smooth, g̃ is a smooth approximation to g .

We choose φ(t) = |t| for |t| > α and φ(t) = at2 + b for |t| ≤ α.
Then, we suitable parameters a, b, α

I The gradient descent for g̃ is even faster than the truncated amplitude
flow.
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Well-behaved landscape

The modified function

g̃(z) =
m∑
r=1

yr
2
·
(
φ

(
aT
r z
√
yr

)
− 1

)2

has a well-behaved landscape: Provided m = O(n), with high probability,

There is no spurious local minima: all local minima are global.

g̃ is strongly convex in a neighbourhood of the global minima.

0 is a local maximum.

The Hessian at all other critical points has both positive and negative
eigenvalues.

J.-F. Cai, M. Huang, D. Li, Y. Wang, Solving Phase Retrieval with
Random Initial Guess Is Nearly as Good as Spectral Initialization,
Forthcoming.
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Phase retrieval and artificial neurons

Our phase retrieval model can be viewed as one artificial neuron.
I Intensity equations:

yr = σ(aT
r x), r = 1, . . . ,m,

where {(ar , yr )}mr=1 are input-output pairs, x is the weight, σ(t) = t2 is
the activation.

I Amplitude equations:

√
yr = σ(aT

r x), r = 1, . . . ,m,

where {(ar ,
√
yr )}mr=1 are input-output pairs, x is the weight, and

σ(t) = |t| is the activation.

Our landscape analysis may be extended from phase retrieval to neural
network training, where the input data are i.i.d. Gaussian.
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Landscape of neural network training

Consider a neural network with one hidden layer and the coefficients ci of
the output layer fixed. We train the network from data pairs {(ar , yr )}mr=1,
i.e.,

`(X ) =
m∑
r=1

(
k∑

i=1

ci · σ(aT
r xi )− yr

)2

Assume {ar}mr=1 is i.i.d. random Gaussian.

If σ(t) = |t|, then ` may have spurious local minima according to our
previous argument.
If σ(t) = max{t, 0}, then ` with
(k,m) ∈ {(8, 9), (10, 11), . . . , (19, 20)} have spurious local minima.
[Safran, Shamir, 2018].
If σ is a polynomial, then the expectation of ` has no spurious local
minima when over-parametrized. [Venturi, Bendeira, Bruna, 2018]
Many other results available.
We are investigating: (1) the landscape with σ(t) = t2 and finite
samples. (2) the landscape with a smoothed ReLU and finite samples.
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Conclusion

Non-convex optimization is a powerful tool for solving many problems.

Through landscape analysis, some non-convex optimizations are not
as difficult as we suppose in the general case.

Examples includes SVD computation, neural network training, and
phase retrieval presented in this talk.

Some other examples that has been revealed recently are matrix
completion, robust principal component analysis, tensor
decomposition, synchronization networks, etc.

Similar to phase retrieval, many such examples are quadratic
equations related.

33 / 34



34 / 34


	Phase Retrieval
	Landscape of intensity equation fitting
	Landscape of amplitude equation fitting
	Extension to neural network training
	Conclusion

