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Sampling high dimensional probability distributions is a ubiquitous
challenge in many fields:

® computational statistical mechanics;
* machine learning;

* Bayesian statistics;

* high-dimensional PDEs;

* quantum many-body problems;

A popular approach is Markov chain Monte Carlo: {X;} sampled from a
Markov chain X;,1 ~ p(-|X;) with invariant measure u.
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Markov chain Monte Carlo: {X;} sampled from a Markov chain

Xiv1 ~ p(]X;) with invariant measure pu.

Central limit theorem holds for “nice” Markov chains:
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with asymptotic variance
0 = varlf (X)] + Z oVl (K, f (Kis))
Efficiency of the MCMC sampler desires

* Short burn-in period;
* Small asymptotic variance.



Efficiency of the MCMC sampler desires
* Short burn-in period;
* Small asymptotic variance.
This talk: Continuous state space x € R?, in particular d > 1

Common design principle:
Construct a continuous time Markov process and then discretize.

Example: Overdamped Langevin dynamics for du o« e V™) dx
dx, = —VU(x,) dt + V2 dW,.

[Rossky, Doll, Friedman 1978]; [Besag 1994]; [Roberts, Tweedie 1996]

Hope for fast convergence to equilibrium of the sampling dynamics.



Overdamped Langevin dynamics for du o« e U® dx
dx, = —VU(x,) dt + V2 dW,.
The Fokker-Planck equation (backward Kolmogorov equation)
O0¢ch = =V, U -V, h + Axh, h(0,x) = hg(x).

The convergence of Fokker-Planck equation is well understood, as the
generator is self-adjoint and coercive with respect to Li.

Assumption (Poincaré inequality for u)

1
f(h—fhdu)zdu < Ef|vxh|2du

This implies that the overdamped dynamics has convergence rate m.
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Our motivation is to establish quantitative convergence rate estimate for
hypocoercive sampling dynamics.

Our first example is the (underdamped)
Langevin dynamics

dxt =V dt
dv, = =VU(x) dt — yv, dt + /2y AW,

Here y is a friction parameter. Paul Langevin (1872-1946)



Our motivation is to establish quantitative convergence rate estimate for
hypocoercive sampling dynamics.

Our first example is the (underdamped)
Langevin dynamics

dxt =Vt dt
dv, = =VU(x;) dt — yv, dt + /2y AW,

Here y is a friction parameter. Paul Langevin (1872-1946)

As y — o0, and after a time rescaling, we will recover the overdamped
Langevin dynamics dx, = —=VU(x,) dt + V2 dW.

The invariant measure of the Langevin dynamics is given by
1 -1
Poo(dx, dv) = =€ V=317 4y dv,

where Z is the normalizing constant. The marginal distribution is u.



Langevin dynamics

dxt =V dt
dv, = =VU(xp) dt — yv dt + \/2—yth

The corresponding backward Kolmogorov equation, known as the kinetic
Fokker-Planck equation, is given by

of =Lf
f0,x,v) = fo(x,v)

with the generator given by £ = Ly, + YLFp with
Lham =V vx—va . VU and LFD = Av — V- VU

We can verify that L*p,, = 0, and thus ps, the invariant measure.



Recall that the overdamped Langevin dynamics converges with rate m,
where m is the Poincaré constant of p.

Question: Any improvement by the underdamped Langevin dynamics?



Recall that the overdamped Langevin dynamics converges with rate m,
where m is the Poincaré constant of p.

Question: Any improvement by the underdamped Langevin dynamics?

Theorem (Cao-L.-Wang 2019)

For convex U satisfying |HessU| < (1 + |VU|) and superlinear as |x| = oo,

1F (6, )~ f £t ) dpanllizoy < Co xp(—ADIF(0,)— f £(0,) dpollizipmy
with explicit estimate of A as
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Recall that the overdamped Langevin dynamics converges with rate m,
where m is the Poincaré constant of p.

Question: Any improvement by the underdamped Langevin dynamics?

Theorem (Cao-L.-Wang 2019)

For convex U satisfying |HessU| < (1 + |VU|) and superlinear as |x| = oo,

1F (6, )~ f £t ) dpanllizoy < Co xp(—ADIF(0,)— f £(0,) dpollizipmy
with explicit estimate of A as

B yvm
A= \/ﬁlog(l + CO(\/m—+y)2)

= 0(/m) if we take y = 0(\Ym).

Results available for more general case; we will not discuss those here.



Exponential convergence with rate vm (setting [ f dpe, = 0)
If (I l2(peg) < Co exp(—cVmO)|I£ (0, )l 12(poy)

* The O(yym) convergence rate is optimal, as can be seen when U is a
Gaussian (so explicit calculation can be done);

* First result in literature for sharp 1/m convergence rate (acceleration
compared with overdamped dynamics with rate m);

* Convergence in L? implies convergence of density in y?-divergence,
and thus in relatively entropy and total variation distance with

O (\/m) rate.



Our analysis also applies to piecewise deterministic Markov process:
Deterministic trajectory between Poisson clocks for random bounces and
velocity refreshment

Randomized Hamiltonian Monte Carlo
uane, Kennedy, Pendleton, Rowet ;
D K dy, Pend| R h 1987
[Bou-Rabee, Sanz-Serna 2017]

L=v-V,=V,U-V,+y(, —7)
S~—— —

Hamiltonian flow

I1,: projection on Gaussian (velocity refreshment)
(M6 = [ £ x o)

Deterministic Hamiltonian flow in between random (Poisson clock with
rate y) velocity refreshment drawn from Gaussian.



Zigzag sampler (ZZ) [Bierkens, Fearnhead, Roberts 2019]

d
L=Vt ) WD V) (B =) + (I, =)

k=1 bouncing rate
with bouncing operators (flipping the k-th velocity component)

ka = f(x,v - 2vkek), k = 1'...’d

Bouncy particle sampler (BPS)
[Peters, de With 2012] [Bouchard-Cété, Vollmer, Doucet 2018]

L= -Vt -VU) (B —-7)+y(l, —7)

with bouncing operator (flipping wrt hyperplane perpendicular to VU)

VU
Bf = f(x,v-2(v- VU)W)

Promising approaches in the context of stochastic gradient.



Theorem (L.-Wang 2020)

For convex U satisfying |HessU| < (1 + |VU|) and superlinear as |x| = oo,
all three PDMPs converge exponentially to equilibrium with rates (after an
optimal choice of velocity freshment rate y)

O(m), for RHMG;

m
y = O(W), for Z7;
0(%), for BPS,

where for the zigzag sampler, we assume in addition that V2U < L.

Results available for more general case; we will not discuss those here.

The rate is optimal for RHMC; for ZZ and BPS, our rate estimate is more
quantitative than previous results in [Deligiannidis, Paulin, Bouchard-Cété,
Doucet 2018]; [Andrieu, Durmus, Nisken, Roussel 2018] (which only
considered rate dependence in d).




Convergence analysis of kinetic Fokker-Planck equation

0cf = Lf = (Lnam +¥Lr0)f;  f(O,%,0) = fo(x,v),
where

Lyom =v -V, =V, U -V, and Lep=A, -V V,

The operator is not elliptic and only hypo-elliptic [Hérmander 1967] (as
the diffusion is degenerate in the x direction).

In particular, we cannot hope for the exponential convergence to follow
from a Poincaré (coercivity) estimate for L. As a result, the constant
Cp > 1 is unavoidable in the decay estimate

If (& )l2pu) < Coexp(=cVmOIf (0, )22 (pee)-



Previous results on quantitative convergence of Langevin dynamics:

Convergence in Hy_ norm [Villani 2009];

Convergence in a modified L3 norm [Dolbeault, Mouhot, Schmeiser
2009; 2015] (also earlier |dea from [Herau 2006]).

This was applied to kinetic Fokker-Planck equation by [Roussel,
Stoltz 2018], which gives explicit rate estimates, though not sharp

Very recent result based on resolvent analysis using Schur
complement [Bernard, Fathi, Levitt, Stoltz 2020]

Convergence in Wasserstein distance: using Bakry-Emery framework
[Boudoin 2016]; by coupling approaches [Eberle, Guillin, Zimmer
2019; Dalalyan, Riou-Durand 2018]

Convergence based on Lyapunov function [Mattingly, Stuart, Higham
2002]



Our analysis method was inspired by a recent variational framework
[Armstrong, Mourrat 2019], which implicitly used the bracket condition
dating back to [Hormander 1967].

As L is not coercive, the idea is to resort to augmenting the state space by
a time interval I = (0,T) equipped with Lebesgue measure A. Since in
time, the diffusion in v direction will propagate to the x direction.



Our analysis method was inspired by a recent variational framework
[Armstrong, Mourrat 2019], which implicitly used the bracket condition
dating back to [Hérmander 1967].

As L is not coercive, the idea is to resort to augmenting the state space by
a time interval I = (0,T) equipped with Lebesgue measure A. Since in
time, the diffusion in v direction will propagate to the x direction.

Let k be the Gaussian measure in velocity (po(dx dv) = u(dx)k(dv)).
The exp. conv. follows from an energy estimate combined with

Theorem (Poincaré inequality in time augmented state space)

1
I = Daullizasiosty = (L 52 = Moflliz sy

1
+ (\/—m + T)”atf - Lhamf”Lz(lX#iHEl)'

where (f)axy *= % [ £(t,x,v) dt dpes.




Proof sketch: Without loss of generality, we assume (f);x, = 0.
By triangular inequality

Wl 2 axpizy < f = Mo fllzaxpizy + 1T fll2 -



Proof sketch: Without loss of generality, we assume (f);x, = 0.

By triangular inequality

Wl 2 axpizy < f = Mo fllzaxpizy + 1T fll2 -

For the underdamped Langevin, using Gaussian Poincaré inequality, we
have
If = o fllzaxpezy < IVofllzaxpz)-

The estimate for [|Tl, f || 2(axy) is more tricky.

We desire to control it with the help of ||0:f — Lyamf |2 (axunzty. thus,
we need to “introduce derivatives”.



The idea is to construct “test functions” (Pg, 1, ..., Pg) € HE(A X w) by
solving a divergence equation

d
~0ufo + Vit = —Ouo + ) (<O by + 0, Uy) = Tl f
i=1

with Dirichlet boundary conditions (note that [, pq 1, f dtu(dx) = 0).

Lemma
d
1/2
lpillZ2 5 S max{m™Y2, T} 1M, f [l 22 axpey;
Axp)
i=0
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I By = | T (=00 + V3 - 8) deu(d)

Ix
[ (-0 + v Ve
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+v-0:¢— z Vv 0y p+ - VxU) dtpe (dx dv)
i
(reintroducing v using Gaussianity)
After splitting I1,,f into f and II,f — f, using integration by parts, we get
I f 1172 gy < N0ef = Lhamf Iz sty 1Po — v - Blliz iy
+ =0 + v Voo +v- 0= ) v,
i
+ ¢ : VXU”LZ(AX#;L%C)”]C - nvf”LZ(lXM;L?C)'

The Poincaré inequality follows from estimate of ¢ and assumption of U.



Quantitative convergence for hypocoercive sampling dynamics based on
time-augmented Poincaré inequalities.

* Underdamped Langevin dynamics;
* Randomized Hamiltonian Monte Carlo;
* Zigzag sampler;

* Bouncy particle sampler.



Quantitative convergence for hypocoercive sampling dynamics based on
time-augmented Poincaré inequalities.

* Underdamped Langevin dynamics;
* Randomized Hamiltonian Monte Carlo:
* Zigzag sampler;

* Bouncy particle sampler.

We did not discuss in this talk the convergence of the sampling algorithm
based on discretization; non-asymptotic analysis of those has been an
active research area in machine learning and statistics literature. See e.g.,

* Discretized underdamped Langevin dynamics: [Cheng, Chatterji,
Bartlett, Jordan 2018] [Dalalyan, Riou-Durand 2018] [Mou, Ma,
Wainwright, Bartlett, Jordan 2019]; [Shen, Lee 2019];

* Discretized Hamiltonian Monte Carlo: [Mangoubi, Vishnoi 2018];
[Lee, Song, Vempala 2018]; [Chen, Vempala 2019]; [Bou-Rabee,
Eberle, Zimmer 2020];



Thank you! Any questions?

Email: jianfeng@math.duke.edu

URL: http://www.math.duke.edu/~jianfeng/
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