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𝑓(𝑋𝑖)

Sampling high dimensional probability distributions is a ubiquitous
challenge in many fields:
• computational statistical mechanics;
• machine learning;
• Bayesian statistics;
• high-dimensional PDEs;
• quantum many-body problems;
• ...

A popular approach is Markov chain Monte Carlo: {𝑋𝑖} sampled from a
Markov chain 𝑋𝑖+1 ∼ 𝑝(⋅|𝑋𝑖) with invariant measure 𝜇.
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Markov chain Monte Carlo: {𝑋𝑖} sampled from a Markov chain
𝑋𝑖+1 ∼ 𝑝(⋅|𝑋𝑖) with invariant measure 𝜇.
Central limit theorem holds for “nice” Markov chains:

√𝑁ቀ 1𝑁

𝑁

෍
𝑖=1

𝑓(𝑋𝑖) − 𝔼 𝜇𝑓(𝑋)ቁ
𝑑→ 𝒩(0, 𝜎2)

with asymptotic variance

𝜎2 = var[𝑓(𝑋𝑖)] + 2
∞

෍
𝑘=1

cov[𝑓(𝑋𝑖), 𝑓(𝑋𝑖+𝑘)].

Efficiency of the MCMC sampler desires
• Short burn-in period;
• Small asymptotic variance.



Efficiency of the MCMC sampler desires
• Short burn-in period;
• Small asymptotic variance.

This talk: Continuous state space 𝑥 ∈ ℝ𝑑, in particular 𝑑 ≫ 1
Common design principle:
Construct a continuous time Markov process and then discretize.
Example: Overdamped Langevin dynamics for d𝜇 ∝ 𝑒−𝑈(𝑥) d𝑥

d𝑥𝑡 = −∇𝑈(𝑥𝑡) d𝑡 + √2 d𝑊𝑡 .

[Rossky, Doll, Friedman 1978]; [Besag 1994]; [Roberts, Tweedie 1996]
Hope for fast convergence to equilibrium of the sampling dynamics.



Overdamped Langevin dynamics for d𝜇 ∝ 𝑒−𝑈(𝑥) d𝑥

d𝑥𝑡 = −∇𝑈(𝑥𝑡) d𝑡 + √2 d𝑊𝑡 .

The Fokker-Planck equation (backward Kolmogorov equation)

𝜕𝑡ℎ = −∇𝑥𝑈 ⋅ ∇𝑥ℎ + Δ𝑥ℎ, ℎ(0, 𝑥) = ℎ0(𝑥).

The convergence of Fokker-Planck equation is well understood, as the
generator is self-adjoint and coercive with respect to 𝐿2𝜇.

Assumption (Poincaré inequality for 𝜇)

න൫ℎ − නℎ d𝜇൯2 d𝜇 ≤ 1
𝑚 න|∇𝑥ℎ|2 d𝜇

This implies that the overdamped dynamics has convergence rate 𝑚.

‖ℎ(𝑡, ⋅) − නℎ(𝑡, ⋅) d𝜇‖𝐿2(𝜇) ≤ 𝑒−𝑚𝑡‖ℎ(0, ⋅) − නℎ(0, ⋅) d𝜇‖𝐿2(𝜇)



Our motivation is to establish quantitative convergence rate estimate for
hypocoercive sampling dynamics.

Our first example is the (underdamped)
Langevin dynamics

d𝑥𝑡 = 𝑣𝑡 d𝑡
d𝑣𝑡 = −∇𝑈(𝑥𝑡) d𝑡 − 𝛾𝑣𝑡 d𝑡 + ඥ2𝛾 d𝑊𝑡

Here 𝛾 is a friction parameter. Paul Langevin (1872–1946)

As 𝛾 → ∞, and after a time rescaling, we will recover the overdamped
Langevin dynamics d𝑥𝑡 = −∇𝑈(𝑥𝑡) d𝑡 + √2 d𝑊𝑡.
The invariant measure of the Langevin dynamics is given by

𝜌∞( d𝑥, d𝑣) =
1
𝑍𝑒

−𝑈(𝑥)− 1
2 |𝑣|

2
d𝑥 d𝑣,

where 𝑍 is the normalizing constant. The marginal distribution is 𝜇.
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Langevin dynamics

d𝑥𝑡 = 𝑣𝑡 d𝑡
d𝑣𝑡 = −∇𝑈(𝑥𝑡) d𝑡 − 𝛾𝑣𝑡 d𝑡 + ඥ2𝛾 d𝑊𝑡

The corresponding backward Kolmogorov equation, known as the kinetic
Fokker-Planck equation, is given by

𝜕𝑡𝑓 = ℒ𝑓
𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣)

with the generator given by ℒ = ℒham + 𝛾ℒFD with

ℒham = 𝑣 ⋅ ∇𝑥−∇𝑥𝑈 ⋅ ∇𝑣 and ℒFD = Δ𝑣 − 𝑣 ⋅ ∇𝑣

We can verify that ℒ∗𝜌∞ = 0, and thus 𝜌∞ the invariant measure.



Recall that the overdamped Langevin dynamics converges with rate 𝑚,
where 𝑚 is the Poincaré constant of 𝜇.
Question: Any improvement by the underdamped Langevin dynamics?

Theorem (Cao-L.-Wang 2019)
For convex 𝑈 satisfying |Hess𝑈| ≲ (1 + |∇𝑈|) and superlinear as |𝑥| → ∞,

‖𝑓(𝑡, ⋅)−න𝑓(𝑡, ⋅) d𝜌∞‖𝐿2(𝜌∞) ≤ 𝐶0 exp(−𝜆𝑡)‖𝑓(0, ⋅)−න𝑓(0, ⋅) d𝜌∞‖𝐿2(𝜌∞)

with explicit estimate of 𝜆 as

𝜆 = √𝑚 logቀ1 + 𝛾√𝑚
𝑐0(√𝑚 + 𝛾)2 ቁ

= 𝒪(√𝑚) if we take 𝛾 = 𝒪(√𝑚).

Results available for more general case; we will not discuss those here.
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Exponential convergence with rate √𝑚 (setting ∫𝑓 d𝜌∞ = 0)

‖𝑓(𝑡, ⋅)‖𝐿2(𝜌∞) ≤ 𝐶0 exp(−𝑐√𝑚𝑡)‖𝑓(0, ⋅)‖𝐿2(𝜌∞)

• The 𝒪(√𝑚) convergence rate is optimal, as can be seen when 𝑈 is a
Gaussian (so explicit calculation can be done);

• First result in literature for sharp √𝑚 convergence rate (acceleration
compared with overdamped dynamics with rate 𝑚);

• Convergence in 𝐿2 implies convergence of density in 𝜒2-divergence,
and thus in relatively entropy and total variation distance with
𝒪(√𝑚) rate.



Our analysis also applies to piecewise deterministic Markov process:
Deterministic trajectory between Poisson clocks for random bounces and
velocity refreshment
Randomized Hamiltonian Monte Carlo

[Duane, Kennedy, Pendleton, Roweth 1987];
[Bou-Rabee, Sanz-Serna 2017]

ℒ = 𝑣 ⋅ ∇𝑥−∇𝑥𝑈 ⋅ ∇𝑣ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
Hamiltonian flow

+𝛾(Π𝑣 − ℐ)

Π𝑣: projection on Gaussian (velocity refreshment)

(Π𝑣𝑓)(𝑡, 𝑥) ∶= න𝑓(𝑡, 𝑥, 𝑣)𝜅( d𝑣)

Deterministic Hamiltonian flow in between random (Poisson clock with
rate 𝛾) velocity refreshment drawn from Gaussian.



Zigzag sampler (ZZ) [Bierkens, Fearnhead, Roberts 2019]

ℒ = 𝑣 ⋅ ∇𝑥+
𝑑

෍
𝑘=1

(𝑣𝑘𝜕𝑥𝑘𝑈)+ᇣᇧᇧᇤᇧᇧᇥ
bouncing rate

(ℬ𝑘 − ℐ) + 𝛾(Π𝑣 − ℐ)

with bouncing operators (flipping the 𝑘-th velocity component)

ℬ𝑘𝑓 = 𝑓(𝑥, 𝑣 − 2𝑣𝑘𝑒𝑘), 𝑘 = 1,⋯ , 𝑑

Bouncy particle sampler (BPS)
[Peters, de With 2012] [Bouchard-Côté, Vollmer, Doucet 2018]

ℒ = 𝑣 ⋅ ∇𝑥+(𝑣 ⋅ ∇𝑈)+(ℬ − ℐ) + 𝛾(Π𝑣 − ℐ)

with bouncing operator (flipping wrt hyperplane perpendicular to ∇𝑈)

ℬ𝑓 = 𝑓ቀ𝑥, 𝑣 − 2(𝑣 ⋅ ∇𝑈) ∇𝑈
|∇𝑈|2 ቁ

Promising approaches in the context of stochastic gradient.



Theorem (L.-Wang 2020)
For convex 𝑈 satisfying |Hess𝑈| ≲ (1 + |∇𝑈|) and superlinear as |𝑥| → ∞,
all three PDMPs converge exponentially to equilibrium with rates (after an
optimal choice of velocity freshment rate 𝛾)

𝜈 =

⎧
⎪

⎨
⎪
⎩

𝒪(√𝑚), for RHMC;

𝒪( √𝑚
ඥ𝐿/𝑚

), for ZZ;

𝒪(√𝑚
√𝑑

), for BPS,

where for the zigzag sampler, we assume in addition that ∇2𝑈 ≤ 𝐿.

Results available for more general case; we will not discuss those here.
The rate is optimal for RHMC; for ZZ and BPS, our rate estimate is more
quantitative than previous results in [Deligiannidis, Paulin, Bouchard-Côté,
Doucet 2018]; [Andrieu, Durmus, Nüsken, Roussel 2018] (which only
considered rate dependence in 𝑑).



Convergence analysis of kinetic Fokker-Planck equation

𝜕𝑡𝑓 = ℒ𝑓 = ൫ℒham + 𝛾ℒFD൯𝑓; 𝑓(0, 𝑥, 𝑣) = 𝑓0(𝑥, 𝑣),

where

ℒham = 𝑣 ⋅ ∇𝑥 − ∇𝑥𝑈 ⋅ ∇𝑣 and ℒFD = Δ𝑣 − 𝑣 ⋅ ∇𝑣

The operator is not elliptic and only hypo-elliptic [Hörmander 1967] (as
the diffusion is degenerate in the 𝑥 direction).
In particular, we cannot hope for the exponential convergence to follow
from a Poincaré (coercivity) estimate for ℒ. As a result, the constant
𝐶0 > 1 is unavoidable in the decay estimate

‖𝑓(𝑡, ⋅)‖𝐿2(𝜌∞) ≤ 𝐶0 exp(−𝑐√𝑚𝑡)‖𝑓(0, ⋅)‖𝐿2(𝜌∞).



Previous results on quantitative convergence of Langevin dynamics:
• Convergence in 𝐻1

𝜌∞ norm [Villani 2009];
• Convergence in a modified 𝐿2𝜌∞ norm [Dolbeault, Mouhot, Schmeiser

2009; 2015] (also earlier idea from [Herau 2006]).
This was applied to kinetic Fokker-Planck equation by [Roussel,
Stoltz 2018], which gives explicit rate estimates, though not sharp

• Very recent result based on resolvent analysis using Schur
complement [Bernard, Fathi, Levitt, Stoltz 2020]

• Convergence in Wasserstein distance: using Bakry-Émery framework
[Boudoin 2016]; by coupling approaches [Eberle, Guillin, Zimmer
2019; Dalalyan, Riou-Durand 2018]

• Convergence based on Lyapunov function [Mattingly, Stuart, Higham
2002]



Our analysis method was inspired by a recent variational framework
[Armstrong, Mourrat 2019], which implicitly used the bracket condition
dating back to [Hörmander 1967].
As ℒ is not coercive, the idea is to resort to augmenting the state space by
a time interval 𝐼 = (0, 𝑇) equipped with Lebesgue measure 𝜆. Since in
time, the diffusion in 𝑣 direction will propagate to the 𝑥 direction.

Let 𝜅 be the Gaussian measure in velocity (𝜌∞( d𝑥 d𝑣) = 𝜇( d𝑥)𝜅( d𝑣)).
The exp. conv. follows from an energy estimate combined with

Theorem (Poincaré inequality in time augmented state space)

‖𝑓 − (𝑓)𝜆×𝜇‖𝐿2(𝜆×𝜇;𝐿2𝜅) ≲ ൫1 + 1
𝑇√𝑚

൯‖𝑓 − Π𝑣𝑓‖𝐿2(𝜆×𝜇;𝐿2𝜅)

+ ൫ 1
√𝑚

+ 𝑇൯‖𝜕𝑡𝑓 − ℒham𝑓‖𝐿2(𝜆×𝜇;𝐻−1𝜅 ),

where (𝑓)𝜆×𝜇 ∶=
1
𝑇 ∫𝑓(𝑡, 𝑥, 𝑣) d𝑡 d𝜌∞.
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Proof sketch: Without loss of generality, we assume (𝑓)𝜆×𝜇 = 0.
By triangular inequality

‖𝑓‖𝐿2(𝜆×𝜇;𝐿2𝜅) ≤ ‖𝑓 − Π𝑣𝑓‖𝐿2(𝜆×𝜇;𝐿2𝜅) + ‖Π𝑣𝑓‖𝐿2(𝜆×𝜇).

For the underdamped Langevin, using Gaussian Poincaré inequality, we
have

‖𝑓 − Π𝑣𝑓‖𝐿2(𝜆×𝜇;𝐿2𝜅) ≤ ‖∇𝑣𝑓‖𝐿2(𝜆×𝜇;𝐿2𝜅).

The estimate for ‖Π𝑣𝑓‖𝐿2(𝜆×𝜇) is more tricky.
We desire to control it with the help of ‖𝜕𝑡𝑓 − ℒham𝑓‖𝐿2(𝜆×𝜇;𝐻−1𝜅 ), thus,
we need to “introduce derivatives”.
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The idea is to construct “test functions” (𝜙0, 𝜙1, … , 𝜙𝑑) ∈ 𝐻1
0(𝜆 × 𝜇) by

solving a divergence equation

−𝜕𝑡𝜙0 + ∇∗𝑥 ⋅ 𝜙 = −𝜕𝑡𝜙0 +
𝑑

෍
𝑖=1

൫−𝜕𝑥𝑖𝜙𝑖 + 𝜕𝑥𝑖𝑈𝜙𝑖൯ = Π𝑣𝑓

with Dirichlet boundary conditions (note that ∫𝐼×ℝ𝑑 Π𝑣𝑓 d𝑡𝜇( d𝑥) = 0).

Lemma

ቀ
𝑑

෍
𝑖=0

‖𝜙𝑖‖2𝐿2(𝜆×𝜇)ቁ
1/2

≲ max൛𝑚−1/2, 𝑇ൟ ‖Π𝑣𝑓‖𝐿2(𝜆×𝜇);

ቀ
𝑑

෍
𝑖,𝑗=0

‖𝜕𝑗𝜙𝑖‖2𝐿2(𝜆×𝜇)ቁ
1/2

≲ ൫1 +𝑚−1/2𝑇−1൯ ‖Π𝑣𝑓‖𝐿2(𝜆×𝜇).



‖Π𝑣𝑓‖2𝐿2(𝜆×𝜇) = න
𝐼×ℝ𝑑

Π𝑣𝑓൫−𝜕𝑡𝜙0 + ∇∗𝑥 ⋅ 𝜙൯ d𝑡𝜇( d𝑥)

= න
𝐼×ℝ𝑑×ℝ𝑑

Π𝑣𝑓൫−𝜕𝑡𝜙0 + 𝑣 ⋅ ∇𝑥𝜙0

+ 𝑣 ⋅ 𝜕𝑡𝜙 −෍
𝑖
𝑣𝑖𝑣 ⋅ 𝜕𝑥𝑖𝜙 + 𝜙 ⋅ ∇𝑥𝑈൯ d𝑡𝜌∞( d𝑥 d𝑣)

(reintroducing 𝑣 using Gaussianity)

After splitting Π𝑣𝑓 into 𝑓 and Π𝑣𝑓 − 𝑓, using integration by parts, we get

‖Π𝑣𝑓‖2𝐿2(𝜆×𝜇) ≤ ‖𝜕𝑡𝑓 − ℒham𝑓‖𝐿2(𝜆×𝜇;𝐻−1𝜅 )‖𝜙0 − 𝑣 ⋅ 𝜙‖𝐿2(𝜆×𝜇;𝐻1𝜅)
+ ฮ−𝜕𝑡𝜙0 + 𝑣 ⋅ ∇𝑥𝜙0 + 𝑣 ⋅ 𝜕𝑡𝜙 −෍

𝑖
𝑣𝑖𝑣 ⋅ 𝜕𝑥𝑖𝜙

+ 𝜙 ⋅ ∇𝑥𝑈ฮ𝐿2(𝜆×𝜇;𝐿2𝜅)‖𝑓 − Π𝑣𝑓‖𝐿2(𝜆×𝜇;𝐿2𝜅).

The Poincaré inequality follows from estimate of 𝜙 and assumption of 𝑈.



Quantitative convergence for hypocoercive sampling dynamics based on
time-augmented Poincaré inequalities.
• Underdamped Langevin dynamics;
• Randomized Hamiltonian Monte Carlo;
• Zigzag sampler;
• Bouncy particle sampler.

We did not discuss in this talk the convergence of the sampling algorithm
based on discretization; non-asymptotic analysis of those has been an
active research area in machine learning and statistics literature. See e.g.,
• Discretized underdamped Langevin dynamics: [Cheng, Chatterji,

Bartlett, Jordan 2018] [Dalalyan, Riou-Durand 2018] [Mou, Ma,
Wainwright, Bartlett, Jordan 2019]; [Shen, Lee 2019];

• Discretized Hamiltonian Monte Carlo: [Mangoubi, Vishnoi 2018];
[Lee, Song, Vempala 2018]; [Chen, Vempala 2019]; [Bou-Rabee,
Eberle, Zimmer 2020];
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Thank you! Any questions?

Email: jianfeng@math.duke.edu

url: http://www.math.duke.edu/~jianfeng/

References:
• with Yu Cao and Lihan Wang, On explicit 𝐿2-convergence rate

estimate for underdamped Langevin dynamics, arXiv:1908.04746
• with Lihan Wang, On explicit 𝐿2-convergence rate estimate for

piecewise deterministic Markov process, arXiv:2007.14927

http://www.math.duke.edu/~jianfeng/

